5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 6
Jun.  2014
Turn off MathJax
Article Contents

Expression Patterns of ABA and GA Metabolism Genes and Hormone Levels during Rice Seed Development and Imbibition: A Comparison of Dormant and Non-Dormant Rice Cultivars

doi: 10.1016/j.jgg.2014.04.004
More Information
  • Corresponding author: E-mail address: ccchu@genetics.ac.cn (Chengcai Chu)
  • Received Date: 2014-03-26
  • Accepted Date: 2014-04-24
  • Rev Recd Date: 2014-04-18
  • Available Online: 2014-05-14
  • Publish Date: 2014-06-20
  • Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy.
  • loading
  • [1]
    Aastrup, S., Outtrup, H., Erdal, K. Location of the proanthocyanidins in the barley grain Carlsberg Res. Commun., 49 (1984),pp. 105-109
    [2]
    Benech-Arnold, R.L., Giallorenzi, M.C., Frank, J. et al. Termination of hull-imposed dormancy in developing barley grains is correlated with changes in embryonic ABA levels and sensitivity Seed Sci. Res., 9 (1999),pp. 39-47
    [3]
    Berridge, M.V., Tan, A.S., Mccoy, K.D. et al. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts Biochemica, 4 (1996),pp. 15-20
    [4]
    Bewley, J.D. Seed germination and dormancy Plant Cell, 9 (1997),pp. 1055-1066
    [5]
    Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M. et al.
    [6]
    Black, M.
    [7]
    Bradford, K.J., Trewavas, A.J. Sensitivity thresholds and variable time scales in plant hormone action Plant Physiol., 105 (1994),pp. 1029-1036
    [8]
    Chamovitz, D., Pecker, I., Hirschberg, J. The molecular basis of resistance to the herbicide norflurazon Plant Mol. Biol., 16 (1991),pp. 967-974
    [9]
    Counce, P.A., Keisling, T.C., Mitchell, A.J. A uniform, objective, and adaptive system for expressing rice development Crop Sci., 40 (2000),pp. 436-443
    [10]
    De Castro, R.D., Hilhorst, H.W.M. Dormancy, germination and the cell cycle in developing and imbibing tomato seeds Rev. Bras. Fisiol. Veg., 12 (2000),pp. 105-136
    [11]
    Debeaujon, I., Leon-Kloosterziel, K.M., Koornneef, M. Plant Physiol., 122 (2000),pp. 403-414
    [12]
    Deshpande, S.S., Cheryan, M., Salunkhe, D.K. Tannin analysis of food products Crit. Rev. Food Sci. Nutr., 24 (1986),pp. 401-449
    [13]
    Donohue, K. Completing the cycle: maternal effects as the missing link in plant life histories Philos. Trans. R. Soc. Lond. B Biol. Sci., 364 (2009),pp. 1059-1074
    [14]
    Fang, J., Chai, C., Qian, Q. et al. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice Plant J., 54 (2008),pp. 177-189
    [15]
    Feurtado, J.A., Yang, J., Ambrose, S.J. et al. J. Plant Growth Regul., 26 (2007),pp. 46-54
    [16]
    Finch-Savage, W.E., Leubner-Metzger, G. Seed dormancy and the control of germination New Phytol., 171 (2006),pp. 501-523
    [17]
    Finkelstein, R., Reeves, W., Ariizumi, T. et al. Molecular aspects of seed dormancy Annu. Rev. Plant Biol., 59 (2008),pp. 387-415
    [18]
    Finkelstein, R.R., Gampala, S.S., Rock, C.D. Abscisic acid signaling in seeds and seedlings Plant Cell, 14 (2002),pp. S15-S45
    [19]
    Gao, F.Y., Ren, G.J., Lu, X.J. et al. Plant Breeding, 127 (2008),pp. 268-273
    [20]
    Gianinetti, A., Vernieri, P. On the role of abscisic acid in seed dormancy of red rice J. Exp. Bot., 58 (2007),pp. 3449-3462
    [21]
    Graeber, K., Nakabayashi, K., Miatton, E. et al. Molecular mechanisms of seed dormancy Plant Cell Environ., 35 (2012),pp. 1769-1786
    [22]
    Groot, S.P., Karssen, C.M. Plant Physiol., 99 (1992),pp. 952-958
    [23]
    Gu, X.Y., Chen, Z.X., Foley, M.E. Inheritance of seed dormancy in weedy rice Crop Sci., 43 (2003),pp. 835-843
    [24]
    Gu, X.Y., Foley, M.E., Horvath, D.P. et al. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice Genetics, 189 (2011),pp. 1515-1524
    [25]
    Gu, X.Y., Kianian, S.F., Foley, M.E. Seed dormancy imposed by covering tissues interrelates to shattering and seed morphological characteristics in weedy rice Crop Sci., 45 (2005),pp. 948-955
    [26]
    Gu, X.Y., Liu, T.L., Feng, J.H. et al. Plant Mol. Biol., 73 (2010),pp. 97-104
    [27]
    Hauser, F., Waadtl, R., Schroeder, J.I. Evolution of abscisic acid synthesis and signaling mechanisms Curr. Biol., 21 (2011),pp. R346-R355
    [28]
    Hilhorst, H.W.M. A critical update on seed dormancy I. Primary dormancy Seed Sci. Res., 5 (1995),pp. 61-73
    [29]
    Holdsworth, M.J., Bentsink, L., Soppe, W.J.J. New Phytol., 179 (2008),pp. 33-54
    [30]
    Huh, S.M., Hwang, Y.S., Shin, Y.S. et al. Comparative transcriptome profiling of developing caryopses from two rice cultivars with differential dormancy J. Plant. Physiol., 170 (2013),pp. 1090-1100
    [31]
    Jacobsen, J.V., Pearce, D.W., Poole, A.T. et al. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley Physiol. Plant., 115 (2002),pp. 428-441
    [32]
    Kaneko, M., Inukai, Y., Ueguchi-Tanaka, M. et al. Plant Cell, 16 (2004),pp. 33-44
    [33]
    Kanno, Y., Jikumaru, Y., Hanada, A. et al. Comprehensive hormone profiling in developing arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions Plant Cell Physiol., 51 (2010),pp. 1988-2001
    [34]
    Karssen, C.M., Brinkhorstvanderswan, D.L.C., Breekland, A.E. et al. Planta, 157 (1983),pp. 158-165
    [35]
    Kato, T., Imai, T., Kashimura, K. et al. Germination response in wheat grains to dihydroactinidiolide, a germination inhibitor in wheat husks, and related compounds J. Agric. Food Chem., 51 (2003),pp. 2161-2167
    [36]
    Kelly, K.M., Vanstaden, J., Bell, W.E. Seed coat structure and dormancy Plant Growth Regul., 11 (1992),pp. 201-209
    [37]
    Kermode, A.R. Role of abscisic acid in seed dormancy J. Plant Growth. Regul., 24 (2005),pp. 319-344
    [38]
    Kojima, M., Kamada-Nobusada, T., Komatsu, H. et al. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa Plant Cell Physiol., 50 (2009),pp. 1201-1214
    [39]
    Koornneef, M., Bentsink, L., Hilhorst, H. Seed dormancy and germination Curr. Opin. Plant Biol., 5 (2002),pp. 33-36
    [40]
    Koornneef, M., Hanhart, C.J., Hilhorst, H.W. et al. Plant Physiol., 90 (1989),pp. 463-469
    [41]
    Koornneef, M., Jorna, M.L., Derswan, D.L.C.B. et al. Theor. Appl. Genet., 61 (1982),pp. 385-393
    [42]
    Kucera, B., Cohn, M.A., Leubner-Metzger, G. Plant hormone interactions during seed dormancy release and germination Seed Sci. Res., 15 (2005),pp. 281-307
    [43]
    Léon-Kloosterziel, K.M., vandeBunt, G.A., Zeevaart, J.A.D. et al. Plant Physiol., 110 (1996),pp. 233-240
    [44]
    LePage-Degivry, M.T., Bianco, J., Barthe, P. et al.
    [45]
    Lu, B., Xie, K., Yang, C. et al. J. Integr. Plant Biol., 53 (2011),pp. 338-346
    [46]
    Lu, B.Y., Xie, K., Yang, C.Y. et al. Mapping two major effect grain dormancy QTL in rice Mol. Breeding, 28 (2011),pp. 453-462
    [47]
    Mccarty, D.R. Genetic control and integration of maturation and germination pathways in seed development Annu. Rev. Plant Phys., 46 (1995),pp. 71-93
    [48]
    Nambara, E., Marion-Poll, A. Abscisic acid biosynthesis and catabolism Annu. Rev. Plant Biol., 56 (2005),pp. 165-185
    [49]
    Nambara, E., Okamoto, M., Tatematsu, K. et al. Abscisic acid and the control of seed dormancy and germination Seed Sci. Res., 20 (2010),pp. 55-67
    [50]
    Ni, B.R., Bradford, K.J. Quantitative models characterizing seed germination responses to abscisic acid and osmoticum Plant Physiol., 98 (1992),pp. 1057-1068
    [51]
    Penfield, S., King, J. Towards a systems biology approach to understanding seed dormancy and germination Philos. Trans. R. Soc. Lond. B Biol. Sci., 276 (2009),pp. 3561-3569
    [52]
    Sakamoto, T., Miyura, K., Itoh, H. et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice Plant Physiol., 134 (2004),pp. 1642-1653
    [53]
    SAS Institute
    [54]
    Schmitz, N., Abrams, S.R., Kermode, A.R. J. Exp. Bot., 53 (2002),pp. 89-101
    [55]
    Schroeder, J.I., Nambara, E. A quick release mechanism for abscisic acid Cell, 126 (2006),pp. 1023-1025
    [56]
    Seshu, D., Sorrells, M. Genetic studies on seed dormancy in rice Rice Genet., 1 (1986),pp. 369-382
    [57]
    Sugimoto, K., Takeuchi, Y., Ebana, K. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 5792-5797
    [58]
    Takeuchi, Y., Lin, S.Y., Sasaki, T. et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice Theor. Appl. Genet., 107 (2003),pp. 1174-1180
    [59]
    Tong, H., Jin, Y., Liu, W. et al. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice Plant J., 58 (2009),pp. 803-816
    [60]
    Ueguchi-Tanaka, M., Fujisawa, Y., Kobayashi, M. et al. Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 11638-11643
    [61]
    Wan, J., Nakazaki, T., Kawaura, K. et al. Crop Sci., 37 (1997),pp. 1759-1763
    [62]
    White, C.N., Proebsting, W.M., Hedden, P. et al. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways Plant Physiol., 122 (2000),pp. 1081-1088
    [63]
    Xie, K., Jiang, L., Lu, B.Y. et al. Plant Breeding, 130 (2011),pp. 328-332
    [64]
    Xiong, L., Zhu, J.K. Regulation of abscisic acid biosynthesis Plant Physiol., 133 (2003),pp. 29-36
    [65]
    Yamaguchi, J. Analysis of embryo-specific alpha-amylase using isolated mature rice embryos Breeding Sci., 48 (1998),pp. 365-370
    [66]
    Zhao, J., Li, G., Yi, G.X. et al. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules Anal. Chim. Acta, 571 (2006),pp. 79-85
    [67]
    Zhao, S., Fernald, R.D. Comprehensive algorithm for quantitative real-time polymerase chain reaction J. Comput. Biol., 12 (2005),pp. 1047-1064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (159) PDF downloads (6) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return