5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 5
May  2014
Turn off MathJax
Article Contents

Gαq, Gγ1 and Plc21C Control Drosophila Body Fat Storage

doi: 10.1016/j.jgg.2014.03.005
More Information
  • Corresponding author: E-mail address: rkuehnl@gwdg.de (Ronald P. Kühnlein)
  • Received Date: 2013-10-31
  • Accepted Date: 2014-03-09
  • Rev Recd Date: 2014-02-26
  • Available Online: 2014-03-27
  • Publish Date: 2014-05-20
  • Adaptive mobilization of body fat is essential for energy homeostasis in animals. In insects, the adipokinetic hormone (Akh) systemically controls body fat mobilization. Biochemical evidence supports that Akh signals via a G protein-coupled receptor (GPCR) called Akh receptor (AkhR) using cyclic-AMP (cAMP) and Ca2+ second messengers to induce storage lipid release from fat body cells. Recently, we provided genetic evidence that the intracellular calcium (iCa2+) level in fat storage cells controls adiposity in the fruit fly Drosophila melanogaster. However, little is known about the genes, which mediate Akh signalling downstream of the AkhR to regulate changes in iCa2+. Here, we used thermogenetics to provide in vivo evidence that the GPCR signal transducers G protein α q subunit (Gαq), G protein γ1 (Gγ1) and Phospholipase C at 21C (Plc21C) control cellular and organismal fat storage in Drosophila. Transgenic modulation of Gαq, Gγ1 and Plc21C affected the iCa2+ of fat body cells and the expression profile of the lipid metabolism effector genesmidway and brummer, which results in severely obese or lean flies. Moreover, functional impairment of Gαq, Gγ1 and Plc21C antagonised Akh-induced fat depletion. This study characterizes Gαq, Gγ1 and Plc21C as anti-obesity genes and supports the model that Akh employs the Gαq/Gγ1/Plc21C module of iCa2+ control to regulate lipid mobilization in adult Drosophila.
  • These two authors contributed equally to this work.
  • loading
  • [1]
    Anand, A.N., Lorenz, M.W. J. Insect Physiol., 54 (2008),pp. 1404-1412
    [2]
    Arrese, E., Rojas-Rivas, B., Wells, M. Insect Biochem. Mol. Biol., 26 (1996),pp. 775-782
    [3]
    Arrese, E.L., Flowers, M.T., Gazard, J.L. et al. J. Lipid Res., 40 (1999),pp. 556-564
    [4]
    Arrese, E.L., Rivera, L., Hamada, M. et al. Function and structure of lipid storage droplet protein 1 studied in lipoprotein complexes Arch. Biochem. Biophys., 473 (2008),pp. 42-47
    [5]
    Auerswald, L., Gäde, G. Insect Biochem. Mol. Biol., 36 (2006),pp. 759-768
    [6]
    Auerswald, L., Siegert, K., Gäde, G. Activation of triacylglycerol lipase in the fat body of a beetle by adipokinetic hormone Insect Biochem. Mol. Biol., 35 (2005),pp. 461-470
    [7]
    Baumbach, J., Hummel, P., Bickmeyer, I. et al. Cell Metab., 19 (2014),pp. 331-343
    [8]
    Beenakkers, A.M. Gen. Comp. Endocrinol., 13 (1969),p. 492
    [9]
    Beller, M., Bulankina, A.V., Hsiao, H.-H. et al. Cell Metab., 12 (2010),pp. 521-532
    [10]
    Bharucha, K.N., Tarr, P., Zipursky, S.L. J. Exp. Biol., 211 (2008),pp. 3103-3110
    [11]
    Bligh, E.G., Dyer, W.J. A rapid method of total lipid extraction and purification Can. J. Biochem. Physiol., 37 (1959),pp. 911-917
    [12]
    Brand, A., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes Development, 118 (1993),pp. 401-415
    [13]
    Buszczak, M., Lu, X., Segraves, W.A. et al. Genetics, 160 (2002),pp. 1511-1518
    [14]
    Cahalan, M.D. Nat. Cell Biol., 11 (2009),pp. 669-677
    [15]
    Dietzl, G., Chen, D., Schnorrer, F. et al. Nature, 448 (2007),pp. 151-156
    [16]
    Fischer, J., Lefèvre, C., Morava, E. et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy Nat. Genet., 39 (2007),pp. 28-30
    [17]
    Gäde, G., Auerswald, L. Mode of action of neuropeptides from the adipokinetic hormone family Gen. Comp. Endocrinol., 132 (2003),pp. 10-20
    [18]
    Gokuldas, M., Hunt, P.A., Candy, D.J. Physiol. Entomol., 13 (1988),pp. 43-48
    [19]
    Grönke, S., Beller, M., Fellert, S. et al. Curr. Biol., 13 (2003),pp. 603-606
    [20]
    Grönke, S., Bickmeyer, I., Wunderlich, R. et al. Genetics, 183 (2009),pp. 219-232
    [21]
    Grönke, S., Mildner, A., Fellert, S. et al. Cell Metab., 1 (2005),pp. 323-330
    [22]
    Grönke, S., Müller, G., Hirsch, J. et al. PLoS Biol., 5 (2007),p. e137
    [23]
    Haemmerle, G., Lass, A., Zimmermann, R. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase Science, 312 (2006),pp. 734-737
    [24]
    Hildebrandt, A., Bickmeyer, I., Kühnlein, R.P. PLoS ONE, 6 (2011),p. e23796
    [25]
    Huang, H., He, X., Deng, X. et al. Biochemistry, 49 (2010),pp. 10862-10872
    [26]
    Iijima, K., Zhao, L., Shenton, C. et al. PLoS ONE, 4 (2009),p. e8498
    [27]
    Katewa, S.D., Demontis, F., Kolipinski, M. et al. Cell Metab., 16 (2012),pp. 97-103
    [28]
    Konuma, T., Morooka, N., Nagasawa, H. et al. Endocrinology, 153 (2012),pp. 3111-3122
    [29]
    Kurat, C., Natter, K., Petschnigg, J. et al. Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast J. Biol. Chem., 281 (2006),pp. 491-500
    [30]
    Lee, G., Park, J.H. Genetics, 167 (2004),pp. 311-323
    [31]
    Lindemans, M., Janssen, T., Beets, I. et al. Gonadotropin-releasing hormone and adipokinetic hormone signaling systems share a common evolutionary origin Front. Endocrinol., 2 (2011),p. 16
    [32]
    Lorenz, M. Arch. Insect Biochem. Physiol., 47 (2001),pp. 198-214
    [33]
    Lorenz, M.W., Gäde, G. Hormonal regulation of energy metabolism in insects as a driving force for performance Integr. Comp. Biol., 49 (2009),pp. 380-392
    [34]
    Lorenz, M.W., Zemek, R., Kodrík, D. et al. Physiol. Entomol., 29 (2004),pp. 146-151
    [35]
    Lum, P.Y., Chino, H. Primary role of adipokinetic hormone in the formation of low density lipophorin in locusts J. Lipid Res., 31 (1990),pp. 2039-2044
    [36]
    Masuyama, K., Zhang, Y., Rao, Y. et al. Mapping neural circuits with activity-dependent nuclear import of a transcription factor J. Neurogenet., 26 (2012),pp. 89-102
    [37]
    Mayer, R.J., Candy, D.J. Control of haemolymph lipid concentration during locust flight: an adipokinetic hormone from the corpora cardiaca J. Insect Physiol., 15 (1969),pp. 611-620
    [38]
    Mcguire, S.E. Science, 302 (2003),pp. 1765-1768
    [39]
    Ogoyi, D.O., Osir, E.O., Olembo, N.K. Comp. Biochem. Physiol., 119B (1998),pp. 163-167
    [40]
    Patel, R.T., Soulages, J.L., Hariharasundaram, B. et al. Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body J. Biol. Chem., 280 (2005),pp. 22624-22631
    [41]
    Pospisilik, J.A., Schramek, D., Schnidar, H. et al. Cell, 140 (2010),pp. 148-160
    [42]
    Roman, G., Endo, K., Zong, L. et al. Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 12602-12607
    [43]
    Slocinska, M., Antos-Krzeminska, N., Golebiowski, M. et al. Comp. Biochem. Physiol. A, 166 (2013),pp. 52-59
    [44]
    Spandl, J., White, D.J., Peychl, J. et al. Live cell multicolor imaging of lipid droplets with a new dye, LD540 Traffic, 10 (2009),pp. 1579-1584
    [45]
    Spencer, I.M., Candy, D.J. Insect Biochem., 6 (1976),pp. 289-296
    [46]
    Stone, J.V., Mordue, W., Batley, K.E. et al. Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilisation during flight Nature, 263 (1976),pp. 207-211
    [47]
    Subramanian, M., Metya, S.K., Sadaf, S. et al. Dis. Model. Mech., 6 (2013),pp. 734-744
    [48]
    Tricoire, H., Battisti, V., Trannoy, S. et al. Mech. Ageing Dev., 130 (2009),pp. 547-552
    [49]
    Vroemen, S.F., van Marrewijk, W.J., Schepers, C.C. et al. Cell Calcium, 17 (1995),pp. 459-467
    [50]
    Wang, Z., Hayakawa, Y., Downer, R.G. Insect Biochem., 20 (1990),pp. 325-330
    [51]
    Wicher, D., Agricola, H., Sohler, S. et al. Differential receptor activation by cockroach adipokinetic hormones produces differential effects on ion currents, neuronal activity, and locomotion J. Neurophysiol., 95 (2006),pp. 2314-2325
    [52]
    Yang, H., He, X., Yang, J. et al. Activation of cAMP-response element-binding protein is positively regulated by PKA and calcium-sensitive calcineurin and negatively by PKC in insect Insect Biochem. Mol. Biol., 43 (2013),pp. 1028-1036
    [53]
    Zhu, C., Huang, H., Hua, R. et al. FEBS Lett., 583 (2009),pp. 1463-1468
    [54]
    Ziegler, R., Jasensky, R.D., Morimoto, H. Regul. Pept., 57 (1995),pp. 329-338
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return