5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 5
May  2014
Turn off MathJax
Article Contents

A Lipidomic Perspective on Intermediates in Cholesterol Synthesis as Indicators of Disease Status

doi: 10.1016/j.jgg.2014.03.001
More Information
  • Corresponding author: E-mail address: aj.brown@unsw.edu.au (Andrew J. Brown)
  • Received Date: 2013-10-30
  • Accepted Date: 2014-03-04
  • Rev Recd Date: 2014-02-18
  • Available Online: 2014-03-13
  • Publish Date: 2014-05-20
  • Lipidomics is increasingly becoming a viable method for researchers to routinely identify the various sterols present in samples, beyond just measuring cholesterol itself. In particular, the measurement of intermediates in cholesterol synthesis can shed new insights into not only the flux through the pathway, but also numerous disease states where levels of sterol intermediates are drastically altered. In this review, we indicate several intermediates that are relevant to disease, and discuss the challenges for analysing them, including the need for standardised methodology or universal controls across the lipidomics field.
  • loading
  • [1]
    Brindisi, M.C., Guiu, B., Duvillard, L. et al. Liver fat content is associated with an increase in cholesterol synthesis independent of statin therapy use in patients with type 2 diabetes Atherosclerosis, 224 (2012),pp. 465-468
    [2]
    Brouwers, M.C., Konrad, R.J., van Himbergen, T.M. et al. Plasma proprotein convertase subtilisin kexin type 9 levels are related to markers of cholesterol synthesis in familial combined hyperlipidemia Nutr. Metab. Cardiovasc. Dis., 23 (2013),pp. 1115-1121
    [3]
    Brown, A.J., Dean, R.T., Jessup, W. Free and esterified oxysterol: formation during copper-oxidation of low density lipoprotein and uptake by macrophages J. Lipid Res., 37 (1996),pp. 320-335
    [4]
    Brown, A.J., Jessup, W. Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis Mol. Aspects Med., 30 (2009),pp. 111-122
    [5]
    Brown, A.J., Leong, S.L., Dean, R.T. et al. 7-Hydroperoxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque J. Lipid Res., 38 (1997),pp. 1730-1745
    [6]
    Byskov, A.G., Andersen, C.Y., Nordholm, L. et al. Chemical structure of sterols that activate oocyte meiosis Nature, 374 (1995),pp. 559-562
    [7]
    Cederberg, H., Gylling, H., Miettinen, T.A. et al. Non-cholesterol sterol levels predict hyperglycemia and conversion to type 2 diabetes in Finnish men PLoS ONE, 8 (2013),p. e67406
    [8]
    Chevy, F., Humbert, L., Wolf, C. Sterol profiling of amniotic fluid: a routine method for the detection of distal cholesterol synthesis deficit Prenat. Diagn., 25 (2005),pp. 1000-1006
    [9]
    de Sain-van der Velden, M.G., Verrips, A., Prinsen, B.H. et al. Elevated cholesterol precursors other than cholestanol can also be a hallmark for CTX J. Inherit. Metab. Dis., 31 (2008),pp. 387-393
    [10]
    Dietschy, J.M., Turley, S.D., Spady, D.K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans J. Lipid Res., 34 (1993),pp. 1637-1659
    [11]
    Fahy, E., Subramaniam, S., Brown, H.A. et al. A comprehensive classification system for lipids J. Lipid Res., 46 (2005),pp. 839-861
    [12]
    Fahy, E., Subramaniam, S., Murphy, R.C. et al. Update of the LIPID MAPS comprehensive classification system for lipids J. Lipid Res. (2009),pp. S9-S14
    [13]
    FitzPatrick, D.R., Keeling, J.W., Evans, M.J. et al. Clinical phenotype of desmosterolosis Am. J. Med. Genet., 75 (1998),pp. 145-152
    [14]
    Gill, S., Chow, R., Brown, A.J. Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised Prog. Lipid Res., 47 (2008),pp. 391-404
    [15]
    Gill, S., Stevenson, J., Kristiana, I. et al. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase Cell Metab., 13 (2011),pp. 260-273
    [16]
    Gylling, H., Hallikainen, M., Pihlajamaki, J. et al. Insulin sensitivity regulates cholesterol metabolism to a greater extent than obesity: lessons from the METSIM Study J. Lipid Res., 51 (2010),pp. 2422-2427
    [17]
    He, M., Kratz, L.E., Michel, J.J. et al. J. Clin. Invest., 121 (2011),pp. 976-984
    [18]
    Javitt, N.B. Alzheimer's disease: neuroprogesterone, epoxycholesterol, and ABC transporters as determinants of neurodesmosterol tissue levels and its role in amyloid protein processing J. Alzheimers Dis., 35 (2013),pp. 441-450
    [19]
    Kelley, R.I., Kratz, L.E., Glaser, R.L. et al. Abnormal sterol metabolism in a patient with Antley-Bixler syndrome and ambiguous genitalia Am. J. Med. Genet., 110 (2002),pp. 95-102
    [20]
    Kölsch, H., Heun, R., Jessen, F. et al. Alterations of cholesterol precursor levels in Alzheimer's disease Biochim. Biophys. Acta, 1801 (2010),pp. 945-950
    [21]
    Lange, Y., Ory, D.S., Ye, J. et al. Effectors of rapid homeostatic responses of endoplasmic reticulum cholesterol and 3-hydroxy-3-methylglutaryl-CoA reductase J. Biol. Chem., 283 (2008),pp. 1445-1455
    [22]
    Lehmann, B., Genehr, T., Knuschke, P. et al. J. Invest. Dermatol., 117 (2001),pp. 1179-1185
    [23]
    Leichner, G.S., Avner, R., Harats, D. et al. Metabolically regulated endoplasmic reticulum-associated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase: evidence for requirement of a geranylgeranylated protein J. Biol. Chem., 286 (2011),pp. 32150-32161
    [24]
    Liebisch, G., Vizcaíno, J.A., Köfeler, H. et al. Shorthand notation for lipid structures derived from mass spectrometry J. Lipid Res., 54 (2013),pp. 1523-1530
    [25]
    Mackay, D.S., Jones, P.J. Plasma noncholesterol sterols: current uses, potential and need for standardization Curr. Opin. Lipidol., 23 (2012),pp. 241-247
    [26]
    Matthan, N.R., Resteghini, N., Robertson, M. et al. Cholesterol absorption and synthesis markers in individuals with and without a CHD event during pravastatin therapy: insights from the PROSPER trial J. Lipid Res., 51 (2010),pp. 202-209
    [27]
    Matthan, N.R., Zhu, L., Pencina, M. et al. Sex-specific differences in the predictive value of cholesterol homeostasis markers and 10-year cardiovascular disease event rate in framingham offspring study participants J. Am. Heart Assoc., 2 (2013),p. e005066
    [28]
    Matysik, S., Klunemann, H.H., Schmitz, G. Gas chromatography-tandem mass spectrometry method for the simultaneous determination of oxysterols, plant sterols, and cholesterol precursors Clin. Chem., 58 (2012),pp. 1557-1564
    [29]
    McDonald, J.G., Smith, D.D., Stiles, A.R. et al. A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma J. Lipid Res., 53 (2012),pp. 1399-1409
    [30]
    McDonald, J.G., Thompson, B.M., McCrum, E.C. et al. Extraction and analysis of sterols in biological matrices by high performance liquid chromatography electrospray ionization mass spectrometry Meth. Enzymol., 432 (2007),pp. 145-170
    [31]
    Miettinen, T.A., Tilvis, R.S., Kesaniemi, Y.A. Serum cholestanol and plant sterol levels in relation to cholesterol metabolism in middle-aged men Metabolism, 38 (1989),pp. 136-140
    [32]
    Min, H.K., Kapoor, A., Fuchs, M. et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease Cell Metab., 15 (2012),pp. 665-674
    [33]
    Nissinen, M.J., Miettinen, T.E., Gylling, H. et al. Applicability of non-cholesterol sterols in predicting response in cholesterol metabolism to simvastatin and fluvastatin treatment among hypercholesterolemic men Nutr. Metab. Cardiovasc. Dis., 20 (2010),pp. 308-316
    [34]
    Pandey, A.V., Fluck, C.E. NADPH P450 oxidoreductase: structure, function, and pathology of diseases Pharmacol. Ther., 138 (2013),pp. 229-254
    [35]
    Porter, F.D., Herman, G.E. Malformation syndromes caused by disorders of cholesterol synthesis J. Lipid Res., 52 (2011),pp. 6-34
    [36]
    Rajaratnam, R.A., Gylling, H., Miettinen, T.A. Impaired postprandial clearance of squalene and apolipoprotein B-48 in post-menopausal women with coronary artery disease Clin. Sci. (Lond.), 97 (1999),pp. 183-192
    [37]
    Rodgers, M.A., Saghatelian, A., Yang, P.L. Identification of an overabundant cholesterol precursor in hepatitis B virus replicating cells by untargeted lipid metabolite profiling J. Am. Chem. Soc., 131 (2009),pp. 5030-5031
    [38]
    Rodgers, M.A., Villareal, V.A., Schaefer, E.A. et al. Lipid metabolite profiling identifies desmosterol metabolism as a new antiviral target for hepatitis C virus J. Am. Chem. Soc., 134 (2012),pp. 6896-6899
    [39]
    Sato, Y., Suzuki, I., Nakamura, T. et al. Identification of a new plasma biomarker of Alzheimer's disease using metabolomics technology J. Lipid Res., 53 (2012),pp. 567-576
    [40]
    Simonen, M., Mannisto, V., Leppanen, J. et al. Desmosterol in human nonalcoholic steatohepatitis Hepatology, 58 (2013),pp. 976-982
    [41]
    Simonen, P., Kotronen, A., Hallikainen, M. et al. Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity J. Hepatol., 54 (2011),pp. 153-159
    [42]
    Simonen, P.P., Gylling, H., Miettinen, T.A. The distribution of squalene and non-cholesterol sterols in lipoproteins in type 2 diabetes Atherosclerosis, 194 (2007),pp. 222-229
    [43]
    Song, B.L., Javitt, N.B., DeBose-Boyd, R.A. Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol Cell Metab., 1 (2005),pp. 179-189
    [44]
    Spann, N.J., Garmire, L.X., McDonald, J.G. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses Cell, 151 (2012),pp. 138-152
    [45]
    Weingärtner, O., Lütjohann, D., Vanmierlo, T. et al. Markers of enhanced cholesterol absorption are a strong predictor for cardiovascular diseases in patients without diabetes mellitus Chem. Phys. Lipids, 164 (2011),pp. 451-456
    [46]
    Wisniewski, T., Newman, K., Javitt, N.B. Alzheimer's disease: brain desmosterol levels J. Alzheimers Dis., 33 (2013),pp. 881-888
    [47]
    Xu, L., Korade, Z., , Mirnics, K. et al. Metabolism of oxysterols derived from nonenzymatic oxidation of 7-dehydrocholesterol in cells J. Lipid Res., 54 (2013),pp. 1135-1143
    [48]
    Yang, C., McDonald, J.G., Patel, A. et al. Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands J. Biol. Chem., 281 (2006),pp. 27816-27826
    [49]
    Zerenturk, E.J., Kristiana, I., Gill, S. et al. The endogenous regulator 24(S),25-epoxycholesterol inhibits cholesterol synthesis at DHCR24 (Seladin-1) Biochim. Biophys. Acta, 1821 (2012),pp. 1269-1277
    [50]
    Zerenturk, E.J., Sharpe, L.J., Ikonen, E. et al. Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis Prog. Lipid Res., 52 (2013),pp. 666-680
    [51]
    Zhu, J., Mounzih, K., Chehab, E.F. et al. Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake J. Lipid Res., 51 (2010),pp. 1312-1324
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return