5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 11
Nov.  2013
Turn off MathJax
Article Contents

Sequence Diversity and Enzyme Activity of Ferric-Chelate Reductase LeFRO1 in Tomato

doi: 10.1016/j.jgg.2013.08.002
More Information
  • Corresponding author: E-mail address: hqling@genetics.ac.cn (Hong-Qing Ling)
  • Received Date: 2013-07-10
  • Accepted Date: 2013-08-09
  • Rev Recd Date: 2013-08-04
  • Available Online: 2013-09-04
  • Publish Date: 2013-11-20
  • Ferric-chelate reductase which functions in the reduction of ferric to ferrous iron on root surface is a critical protein for iron homeostasis in strategy I plants. LeFRO1 is a major ferric-chelate reductase involved in iron uptake in tomato. To identify the natural variations of LeFRO1 and to assess their effect on the ferric-chelate reductase activity, we cloned the coding sequences of LeFRO1 from 16 tomato varieties collected from different regions, and detected three types of LeFRO1 (LeFRO1MM, LeFRO1Ailsa and LeFRO1Monita) with five amino acid variations at the positions 21, 24, 112, 195 and 582. Enzyme activity assay revealed that the three types of LeFRO1 possessed different ferric-chelate reductase activity (LeFRO1Ailsa > LeFRO1MM > LeFRO1Monita). The 112th amino acid residue Ala of LeFRO1 is critical for maintaining the high activity of ferric-chelate reductase, because modification of this amino acid resulted in a significant reduction of enzyme activity. Further, we showed that the combination of the amino acid residue Ile at the site 24 with Lys at the site 582 played a positive role in the enzyme activity of LeFRO1. In conclusion, the findings are helpful to understand the natural adaptation mechanisms of plants to iron-limiting stress, and may provide new knowledge to select and manipulate LeFRO1 for improving the iron deficiency tolerance in tomato.
  • loading
  • [1]
    Becker, R., Fritz, E., Manteuffel, R. Plant Physiol., 108 (1995),pp. 269-275
    [2]
    Colangelo, E.P., Guerinot, M.L. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response Plant Cell, 16 (2004),pp. 3400-3412
    [3]
    Connolly, E.L., Campbell, N.H., Grotz, N. et al. Plant Physiol., 133 (2003),pp. 1102-1110
    [4]
    Ding, H., Duan, L., Wu, H. et al. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize Physiol. Plant, 136 (2009),pp. 274-283
    [5]
    Eide, D., Broderius, M., Fett, J. et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 5624-5628
    [6]
    Eide, D., Guarente, L. J. Gen. Microbiol., 138 (1992),pp. 347-354
    [7]
    Garcia-Mina, J.M., Bacaicoa, E., Fuentes, M. et al. Fine regulation of leaf iron use efficiency and iron root uptake under limited iron bioavailability Plant Sci., 198 (2013),pp. 39-45
    [8]
    Grusak, M.A., Pezeshgi, S. Plant Physiol., 110 (1996),pp. 329-334
    [9]
    Guerinot, M.L. To improve nutrition for the world's population Science, 288 (2000),pp. 1966-1967
    [10]
    Guerinot, M.L., Yi, Y. Iron: Nutritious, noxious, and not readily available Plant Physiol., 104 (1994),pp. 815-820
    [11]
    Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants EMBO J., 6 (1987),pp. 3901-3907
    [12]
    Klein, M., López-Millán, A., Grusak, M.A. Plant Soil, 351 (2012),pp. 363-376
    [13]
    Li, L., Cheng, X., Ling, H.-Q. Plant Mol. Biol., 54 (2004),pp. 125-136
    [14]
    Robinson, N.J., Procter, C.M., Connolly, E.L. et al. A ferric-chelate reductase for iron uptake from soils Nature, 397 (1999),pp. 694-697
    [15]
    Römheld, V. Different strategies for iron acquisition in higher plants Physiol. Plant, 70 (1987),pp. 231-234
    [16]
    Saleeba, J.A., Guerinot, M.L. BioMetals, 8 (1995),pp. 297-300
    [17]
    Santi, S., Cesco, S., Varanini, Z. et al. Plant Physiol. Biochem., 43 (2005),pp. 287-292
    [18]
    Santi, S., Schmidt, W. Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber J. Exp. Bot., 59 (2008),pp. 697-704
    [19]
    Schagerlöf, U., Wilson, G., Hebert, H. et al. Plant Mol. Biol., 62 (2006),pp. 215-221
    [20]
    The Tomato Genome Consortium The tomato genome sequence provides insights into fleshy fruit evolution Nature, 485 (2013),pp. 635-641
    [21]
    Wang, N., Cui, Y., Liu, Y. et al. Mol. Plant, 6 (2013),pp. 503-513
    [22]
    Waters, B.M., Blevins, D.G., Eide, D.J. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition Plant Physiol., 129 (2002),pp. 85-94
    [23]
    Yi, Y., Guerinot, M.L. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency Plant J., 10 (1996),pp. 835-844
    [24]
    Yuan, Y., Wu, H., Wang, N. et al. Cell Res., 18 (2008),pp. 385-397
    [25]
    Yuan, Y.X., Zhang, J., Wang, D.W. et al. Cell Res., 15 (2005),pp. 613-621
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return