5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 12
Dec.  2013
Turn off MathJax
Article Contents

QTL Scanning for Rice Yield Using a Whole Genome SNP Array

doi: 10.1016/j.jgg.2013.06.009
More Information
  • Corresponding author: E-mail address: yzhxing@hotmail.com (Yongzhong Xing)
  • Received Date: 2013-01-15
  • Accepted Date: 2013-06-20
  • Rev Recd Date: 2013-05-29
  • Available Online: 2013-08-20
  • Publish Date: 2013-12-20
  • High-throughput SNP genotyping is widely used for plant genetic studies. Recently, a RICE6K SNP array has been developed based on the Illumina Bead Array platform and Infinium SNP assay technology for genome-wide evaluation of allelic variations and breeding applications. In this study, the RICE6K SNP array was used to genotype a recombinant inbred line (RIL) population derived from the cross between the indica variety, Zhenshan 97, and the japonica variety, Xizang 2. A total of 3324 SNP markers of high quality were identified and were grouped into 1495 recombination bins in the RIL population. A high-density linkage map, consisting of the 1495 bins, was developed, covering 1591.2 cM and with average length of 1.1 cM per bin. Segregation distortions were observed in 24 regions of the 11 chromosomes in the RILs. One half of the distorted regions contained fertility genes that had been previously reported. A total of 23 QTLs were identified for yield. Seven QTLs were firstly detected in this study. The positive alleles from about half of the identified QTLs came from Zhenshan 97 and they had lower phenotypic values than Xizang 2. This indicated that favorable alleles for breeding were dispersed in both parents and pyramiding favorable alleles could develop elite lines. The size of the mapping population for QTL analysis using high throughput SNP genotyping platform is also discussed.
  • These authors contribute equally to the work.
  • loading
  • [1]
    Ashikari, M., Sakakibara, H., Lin, S. et al. Cytokinin oxidase regulates rice grain production Science, 309 (2005),pp. 741-745
    [2]
    Batley, J., Barker, G., O'Sullivan, H. et al. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data Plant Physiol., 132 (2003),pp. 84-91
    [3]
    Boststein, D., White, R.L., Skolnick, M. et al. Construction of genetic linkage map in man using restriction fragment length polymorphism Am. J. Hum. Genet., 32 (1980),pp. 314-331
    [4]
    Broman, K.W., Wu, H., Sen, Ś. et al. R/qtl: QTL mapping in experimental crosses Bioinformatics, 19 (2003),pp. 889-890
    [5]
    Chang, L., Ma, H., Xue, H.W. Cell Res., 19 (2009),pp. 768-782
    [6]
    Chen, M., Presting, G., Barbazuk, W.B. et al. An integrated physical and genetic map of the rice genome Plant Cell, 14 (2002),pp. 537-545
    [7]
    Chen, R., Zhao, X., Shao, Z. et al. Plant Cell, 19 (2007),pp. 847-861
    [8]
    Chin, J.H., Kim, J.H., Jiang, W. et al. Crop Sci. Biotech., 10 (2007),pp. 175-184
    [9]
    Cho, Y.C., Suh, J.P., Choi, I.S. et al. Treat Crop Res., 4 (2003),pp. 19-29
    [10]
    Duan, Y., Diao, Z., Liu, H. et al. Plant Mol. Biol., 74 (2010),pp. 605-615
    [11]
    Fan, C., Xing, Y., Mao, H. et al. Theor. Appl. Genet., 112 (2006),pp. 1164-1171
    [12]
    Gregorova, S., Forejt, J. Folia Biol., 46 (2000),pp. 31-41
    [13]
    Gupta, P.K., Rustgi, S., Mir, R.R. Array-based high-throughput DNA markers for crop improvement Heredity, 101 (2008),pp. 5-18
    [14]
    Han, M.J., Jung, K.H., Yi, G. et al. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development Plant Cell Physiol., 47 (2006),pp. 1457-1472
    [15]
    Harushima, Y., Yano, M., Shomura, A. et al. Genetics, 148 (1998),pp. 479-494
    [16]
    Hemamalini, G.S., Shashidhar, H.E., Hittalmani, S. Euphytica, 112 (2000),pp. 69-78
    [17]
    Hua, J.P., Xing, Y.Z., Xu, C.G. et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance Genetics, 162 (2002),pp. 1885-1895
    [18]
    Huang, X., Feng, Q., Qian, Q. et al. High-throughput genotyping by whole-genome resequencing Genome Res., 19 (2009),pp. 1068-1076
    [19]
    Huang, X., Zhao, Y., Wei, X. et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm Nat. Genet., 44 (2011),pp. 32-41
    [20]
    Itabashi, E., Iwata, N., Fujii, S. et al. Plant J., 65 (2011),pp. 359-367
    [21]
    Jung, K.H., Han, M.J., Lee, Y.S. et al. Plant Cell, 17 (2005),pp. 2705-2722
    [22]
    Komorisono, M., Ueguchi-Tanaka, M., Aichi, I. et al. Plant Physiol., 138 (2005),pp. 1982-1993
    [23]
    Kosambi, D.D. The estimation of map distances from recombination values Ann. Hum. Genet., 12 (1943),pp. 172-175
    [24]
    Kota, R., Rudd, S., Facius, A. et al. Mol. Genet. Genomics, 270 (2003),pp. 24-33
    [25]
    Kurata, N., Nagamura, Y., Yamamoto, K. et al. A 300 kilobase interval genetic map of rice including 883 expressed sequences Nat. Genet., 8 (1994),pp. 365-372
    [26]
    Lange, C., Mittermayr, L., Dohm, J.C. et al. High-throughput identification of genetic markers using representational oligonucleotide microarray analysis Theor. Appl. Genet., 121 (2010),pp. 549-565
    [27]
    Li, H., Pinot, F., Sauveplane, V. et al. Plant Cell, 22 (2010),pp. 173-190
    [28]
    Li, N., Zhang, D.S., Liu, H.S. et al. Plant Cell, 18 (2006),pp. 2999-3014
    [29]
    Li, Y., Fan, C., Xing, Y. et al. Nature Genet., 43 (2011),pp. 1266-1269
    [30]
    Li, Z., Pinson, S.R., Park, W.D. et al. Genetics, 145 (1997),pp. 453-465
    [31]
    Lin, H.X., Qian, H.R., Zhuang, J.Y. et al. Theor. Appl. Genet., 92 (1996),pp. 920-927
    [32]
    Liu, T., Mao, D., Zhang, S. et al. Fine mapping SPP1, a QTL controlling the number of spikelet per panicle, to a BAC clone in rice (Oryza Sativa) Theor. Appl. Genet., 118 (2009),pp. 1509-1517
    [33]
    Lu, C., Shen, L., Tan, Z. et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population Theor. Appl. Genet., 93 (1996),pp. 1211-1217
    [34]
    Luo, L.J., Li, Z.K., Mei, H.W. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components Genetics, 158 (2001),pp. 1755-1771
    [35]
    Mardis, E.R. Next-generation DNA sequencing methods Annu. Rev. Genomics Hum. Genet., 9 (2008),pp. 387-402
    [36]
    Marri, P.R., Sarla, N., Reddy, L.V. et al. BMC Genet., 6 (2005),p. 33
    [37]
    Matsuzaki, H., Dong, S., Loi, H. et al. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays Nat. Methods, 1 (2004),pp. 109-111
    [38]
    Muluvi, G.M., Sprent, J.I., Soranzo, N. et al. Mol. Ecol, 8 (1999),pp. 463-470
    [39]
    Murray, M.G., Thompson, W.F. Rapid isolation of high molecular weight plant DNA Nucleic Acids Res., 8 (1980),pp. 4321-4326
    [40]
    Pasquini, G., Barba, M., Hadidi, A. et al. J. Virol. Methods, 147 (2008),pp. 118-126
    [41]
    Quinn, T.W., White, B.N. Mol. Biol. Evol., 4 (1987),pp. 126-143
    [42]
    Remington, D.L., Ungerer, M.C., Purugganan, M.D. Map-based cloning of quantitative trait loci: progress and prospects Genet. Res., 78 (2001),pp. 213-218
    [43]
    Shomura, A., Izawa, T., Ebana, K. et al. Deletion in a gene associated with grain size increased yields during rice domestication Nat. Genet., 40 (2008),pp. 1023-1028
    [44]
    Tan, Y.F., Xing, Y.Z., Li, J.X. et al. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid Theor. Appl. Genet., 101 (2000),pp. 823-829
    [45]
    Temnykh, S., Park, W.D., Ayres, N. et al. Theor. Appl. Genet., 100 (2000),pp. 697-712
    [46]
    Thomson, M., Tai, T., McClung, A. et al. Theor. Appl. Genet., 107 (2003),pp. 479-493
    [47]
    Tian, F., Fu, Q., Zhu, Z.F. et al. Theor. Appl. Genet., 112 (2006),pp. 570-580
    [48]
    Tsuchihashi, Z., Dracopoli, N.C. Progress in high throughput SNP genotyping methods Pharmacogenomics J., 2 (2002),pp. 103-110
    [49]
    Vales, M.I., Schön, C.C., Capettini, F. et al. Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust Theor. Appl. Genet., 111 (2005),pp. 1260-1270
    [50]
    Wang, D.G., Fan, J.B., Siao, C.J. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome Science, 280 (1998),pp. 1077-1082
    [51]
    Wang, L., Wang, A., Huang, X. et al. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines Theor. Appl. Genet., 122 (2011),pp. 327-340
    [52]
    Williams, J.G.K., Kubelik, A.R., Livak, K.J. et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers Nucleic. Acids. Res., 18 (1990),pp. 6531-6535
    [53]
    Xiao, J., Grandillo, S., Ahn, S.N. et al. Genes from wild rice improve yield Nature, 384 (1996),pp. 223-224
    [54]
    Xie, W., Feng, Q., Yu, H. et al. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 10578-10583
    [55]
    Xing, Y., Tan, Y., Hua, J. et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice Theor. Appl. Genet., 105 (2002),pp. 248-257
    [56]
    Xing, Y., Zhang, Q. Genetic and molecular bases of rice yield Annu. Rev. Plant Biol., 61 (2010),pp. 421-442
    [57]
    Xing, Y.Z., Xu, C.G., Hua, J.P. et al. Analysis of QTL × environment interaction for rice panicle characteristics Acta Genetica Sinica, 28 (2001),pp. 439-446
    [58]
    Xue, W., Xing, Y., Weng, X. et al. Nat. Genet., 40 (2008),pp. 761-767
    [59]
    Yamagata, Y., Yamamoto, E., Aya, K. et al. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 1494-1499
    [60]
    Yan, J.Q., Zhu, J., He, C.X. et al. Theor. Appl. Genet., 97 (1998),pp. 267-274
    [61]
    Yan, W.H., Wang, P., Chen, H.X. et al. Mol. Plant, 4 (2011),pp. 319-330
    [62]
    Yang, G.H., Xing, Y.Z., Li, S.Q. et al. Hereditas, 143 (2006),pp. 236-245
    [63]
    Yu, H., Xie, W., Wang, J. et al. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers PLoS ONE, 6 (2011),p. e17595
    [64]
    Zhou, S., Wang, Y., Li, W. et al. Plant Cell, 23 (2011),pp. 111-129
    [65]
    Zhu, Q.H., Ramm, K., Shivakkumar, R. et al. Plant Physiol., 135 (2004),pp. 1514-1525
    [66]
    Zhuang, J.Y., Fan, Y.Y., Rao, Z.M. et al. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice Theor. Appl. Genet., 105 (2002),pp. 1137-1145
    [67]
    Zietkiewicz, E., Rafalski, A., Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification Genomics, 20 (1994),pp. 176-183
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (82) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return