5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 7
Jul.  2013
Turn off MathJax
Article Contents

Histone Variants in Development and Diseases

doi: 10.1016/j.jgg.2013.05.001
More Information
  • Corresponding author: E-mail address: liguohong@sun5.ibp.ac.cn (Guohong Li)
  • Received Date: 2013-02-05
  • Accepted Date: 2013-05-09
  • Rev Recd Date: 2013-05-09
  • Available Online: 2013-05-20
  • Publish Date: 2013-07-20
  • Eukaryotic genomic DNA is highly packaged into chromatin by histones to fit inside the nucleus. Other than the bulk packaging role of canonical histones with an expression peak at S phase and replication-coupled deposition, different histone variants have evolved distinct regulatory mechanisms for their expression, deposition and functional implications. The diversity of histone variants results in structural plasticity of chromatin and highlights functionally distinct chromosomal domain, which plays critical roles in development from a fertilized egg into a complex organism, as well as in aging and diseases. However, the mechanisms of this fundamental process are poorly understood so far. It is of particular interest to investigate how the variants are incorporated into chromatin and mark specific chromatin states to regulate gene expression, and how they are involved in development and diseases. In this review, we focus on recent progress in studies of epigenetic regulation of three extensively investigated variants including H2A.Z, macroH2A and H3.3, and their functional implications in development and diseases.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Abbott, D.W., Chadwick, B.P., Thambirajah, A.A. et al. Beyond the Xi: macroH2A chromatin distribution and post-translational modification in an avian system J. Biol. Chem., 280 (2005),pp. 16437-16445
    [2]
    Ahmad, K., Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly Mol. Cell, 9 (2002),pp. 1191-1200
    [3]
    Angelov, D., Molla, A., Perche, P.Y. et al. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling Mol. Cell, 11 (2003),pp. 1033-1041
    [4]
    Barski, A., Cuddapah, S., Cui, K. et al. High-resolution profiling of histone methylations in the human genome Cell, 129 (2007),pp. 823-837
    [5]
    Berdasco, M., Ropero, S., Setien, F. et al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 21830-21835
    [6]
    Billon, P., Côté, J. Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance Biochim. Biophys. Acta, 1819 (2012),pp. 290-302
    [7]
    Bonisch, C., Hake, S.B. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res., 40 (2012),pp. 10719-10741
    [8]
    Braunschweig, U., Hogan, G.J., Pagie, L. et al. Histone H1 binding is inhibited by histone variant H3.3 EMBO J., 28 (2009),pp. 3635-3645
    [9]
    Buschbeck, M., Uribesalgo, I., Wibowo, I. et al. The histone variant macroH2A is an epigenetic regulator of key developmental genes Nat. Struct. Mol. Biol., 16 (2009),pp. 1074-1079
    [10]
    Chakravarthy, S., Gundimella, S.K., Caron, C. et al. Structural characterization of the histone variant macroH2A Mol. Cell. Biol., 25 (2005),pp. 7616-7624
    [11]
    Chakravarthy, S., Luger, K. The histone variant macro-H2A preferentially forms “hybrid nucleosomes” J. Biol. Chem., 281 (2006),pp. 25522-25531
    [12]
    Changolkar, L.N., Costanzi, C., Leu, N.A. et al. Developmental changes in histone macroH2A1-mediated gene regulation Mol. Cell. Biol., 27 (2007),pp. 2758-2764
    [13]
    Chu, F., Nusinow, D.A., Chalkley, R.J. et al. Mapping post-translational modifications of the histone variant MacroH2A1 using tandem mass spectrometry Mol. Cell Proteomics, 5 (2006),pp. 194-203
    [14]
    Clarkson, M.J., Wells, J.R., Gibson, F. et al. Nature, 399 (1999),pp. 694-697
    [15]
    Conerly, M.L., Teves, S.S., Diolaiti, D. et al. Changes in H2A.Z occupancy and DNA methylation during B-cell lymphomagenesis Genome Res., 20 (2010),pp. 1383-1390
    [16]
    Costanzi, C., Pehrson, J.R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals Nature, 393 (1998),pp. 599-601
    [17]
    Costanzi, C., Pehrson, J.R. MACROH2A2, a new member of the MARCOH2A core histone family J. Biol. Chem., 276 (2001),pp. 21776-21784
    [18]
    Costanzi, C., Stein, P., Worrad, D.M. et al. Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos Development, 127 (2000),pp. 2283-2289
    [19]
    Couldrey, C., Carlton, M.B., Nolan, P.M. et al. A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice Hum. Mol. Genet., 8 (1999),pp. 2489-2495
    [20]
    Creppe, C., Janich, P., Cantarino, N. et al. MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells Mol. Cell. Biol., 32 (2012),pp. 1442-1452
    [21]
    Creyghton, M.P., Markoulaki, S., Levine, S.S. et al. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment Cell, 135 (2008),pp. 649-661
    [22]
    Deal, R.B., Topp, C.N., McKinney, E.C. et al. Plant Cell, 19 (2007),pp. 74-83
    [23]
    Dryhurst, D., McMullen, B., Fazli, L. et al. Cancer Lett., 315 (2012),pp. 38-47
    [24]
    Elsasser, S.J., Huang, H., Lewis, P.W. et al. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition Nature, 491 (2012),pp. 560-565
    [25]
    Faast, R., Thonglairoam, V., Schulz, T.C. et al. Histone variant H2A.Z is required for early mammalian development Curr. Biol., 11 (2001),pp. 1183-1187
    [26]
    Fan, J.Y., Gordon, F., Luger, K. et al. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states Nat. Struct. Biol., 9 (2002),pp. 172-176
    [27]
    Fan, J.Y., Rangasamy, D., Luger, K. et al. H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding Mol. Cell, 16 (2004),pp. 655-661
    [28]
    Fontebasso, A.M., Liu, X.Y., Sturm, D. et al. Chromatin remodeling defects in pediatric and young adult glioblastoma: a tale of a variant histone 3 tail Brain Pathol., 23 (2013),pp. 210-216
    [29]
    Gamble, M.J., Frizzell, K.M., Yang, C. et al. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing Genes Dev., 24 (2010),pp. 21-32
    [30]
    Gessi, M., Gielen, G.H., Hammes, J. et al. H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications? J. Neurooncol., 112 (2013),pp. 67-72
    [31]
    Greaves, I.K., Rangasamy, D., Ridgway, P. et al. H2A.Z contributes to the unique 3D structure of the centromere Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 525-530
    [32]
    Guillemette, B., Bataille, A.R., Gevry, N. et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning PLoS Biol., 3 (2005),p. e384
    [33]
    Hake, S.B., Allis, C.D. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis” Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 6428-6435
    [34]
    Hake, S.B., Garcia, B.A., Kauer, M. et al. Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 6344-6349
    [35]
    Henikoff, S., Dalal, Y. Centromeric chromatin: what makes it unique? Curr. Opin. Genet. Dev., 15 (2005),pp. 177-184
    [36]
    Henikoff, S. Labile H3.3+H2A.Z nucleosomes mark ‘nucleosome-free regions’ Nat. Genet., 41 (2009),pp. 865-866
    [37]
    Hernandez-Munoz, I., Lund, A.H., van der Stoop, P. et al. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 7635-7640
    [38]
    Hoch, D.A., Stratton, J.J., Gloss, L.M. Protein-protein Forster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z J. Mol. Biol., 371 (2007),pp. 971-988
    [39]
    Hu, G., Cui, K., Northrup, D. et al. H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation Cell Stem Cell, 12 (2013),pp. 180-192
    [40]
    Hua, S., Kallen, C.B., Dhar, R. et al. Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression Mol. Syst. Biol., 4 (2008),p. 188
    [41]
    Jackson, J.D., Gorovsky, M.A. Histone H2A.Z has a conserved function that is distinct from that of the major H2A sequence variants Nucleic Acids Res., 28 (2000),pp. 3811-3816
    [42]
    Jin, C., Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z Genes Dev., 21 (2007),pp. 1519-1529
    [43]
    Jin, C., Zang, C., Wei, G. et al. H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions Nat. Genet., 41 (2009),pp. 941-945
    [44]
    John, S., Sabo, P.J., Johnson, T.A. et al. Interaction of the glucocorticoid receptor with the chromatin landscape Mol. Cell, 29 (2008),pp. 611-624
    [45]
    Kapoor, A., Goldberg, M.S., Cumberland, L.K. et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8 Nature, 468 (2010),pp. 1105-1109
    [46]
    Khuong-Quang, D.A., Buczkowicz, P., Rakopoulos, P. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas Acta Neuropathol., 124 (2012),pp. 439-447
    [47]
    Lewis, P.W., Elsaesser, S.J., Noh, K.M. et al. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 14075-14080
    [48]
    Li, B., Pattenden, S.G., Lee, D. et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 18385-18390
    [49]
    Li, X., Kuang, J., Shen, Y. et al. The atypical histone macroH2A1.2 interacts with HER-2 protein in cancer cells J. Biol. Chem., 287 (2012),pp. 23171-23183
    [50]
    Li, Z., Gadue, P., Chen, K. et al. Foxa2 and H2A.Z mediate nucleosome depletion during embryonic stem cell differentiation Cell, 151 (2012),pp. 1608-1616
    [51]
    Light, W.H., Brickner, D.G., Brand, V.R. et al. Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and INO1 transcriptional memory Mol. Cell, 40 (2010),pp. 112-125
    [52]
    Liu, C.P., Xiong, C., Wang, M. et al. Structure of the variant histone H3.3-H4 heterodimer in complex with its chaperone DAXX Nat. Struct. Mol. Biol., 19 (2012),pp. 1287-1292
    [53]
    Liu, X., Li, B., Gorovsky, Ma Mol. Cell. Biol., 16 (1996),pp. 4305-4311
    [54]
    Loppin, B., Bonnefoy, E., Anselme, C. et al. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus Nature, 437 (2005),pp. 1386-1390
    [55]
    Luger, K., Mader, A.W., Richmond, R.K. et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution Nature, 389 (1997),pp. 251-260
    [56]
    Makarevitch, I., Eichten, S.R., Briskine, R. et al. Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27 Plant Cell, 25 (2013),pp. 780-793
    [57]
    McKittrick, E., Gafken, P.R., Ahmad, K. et al. Histone H3.3 is enriched in covalent modifications associated with active chromatin Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 1525-1530
    [58]
    Meneghini, M.D., Wu, M., Madhani, H.D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin Cell, 112 (2003),pp. 725-736
    [59]
    Mermoud, J.E., Costanzi, C., Pehrson, J.R. et al. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation J. Cell Biol., 147 (1999),pp. 1399-1408
    [60]
    Millau, J.F., Gaudreau, L. CTCF, cohesin, and histone variants: connecting the genome Biochem. Cell Biol., 89 (2011),pp. 505-513
    [61]
    Nekrasov, M., Amrichova, J., Parker, B.J. et al. Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics Nat. Struct. Mol. Biol., 19 (2012),pp. 1076-1083
    [62]
    Ng, R.K., Gurdon, J.B. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription Nat. Cell Biol., 10 (2008),pp. 102-109
    [63]
    Nusinow, D.A., Hernandez-Munoz, I., Fazzio, T.G. et al. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome J. Biol. Chem., 282 (2007),pp. 12851-12859
    [64]
    Orsi, G.A., Couble, P., Loppin, B. Epigenetic and replacement roles of histone variant H3.3 in reproduction and development Int. J. Dev. Biol., 53 (2009),pp. 231-243
    [65]
    Park, Y.J., Dyer, P.N., Tremethick, D.J. et al. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome J. Biol. Chem., 279 (2004),pp. 24274-24282
    [66]
    Pasque, V., Gillich, A., Garrett, N. et al. Histone variant macroH2A confers resistance to nuclear reprogramming EMBO J., 30 (2011),pp. 2373-2387
    [67]
    Pehrson, J.R., Fried, V.A. MacroH2A, a core histone containing a large nonhistone region Science, 257 (1992),pp. 1398-1400
    [68]
    Raisner, R.M., Hartley, P.D., Meneghini, M.D. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin Cell, 123 (2005),pp. 233-248
    [69]
    Rangasamy, D., Greaves, I., Tremethick, D.J. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation Nat. Struct. Mol. Biol., 11 (2004),pp. 650-655
    [70]
    Rasmussen, T.P., Huang, T., Mastrangelo, M.A. et al. Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing Nucleic Acids Res., 27 (1999),pp. 3685-3689
    [71]
    Rasmussen, T.P., Wutz, A.P., Pehrson, J.R. et al. Chromosoma, 110 (2001),pp. 411-420
    [72]
    Redon, C., Pilch, D., Rogakou, E. et al. Histone H2A variants H2AX and H2AZ Curr. Opin. Genet. Dev., 12 (2002),pp. 162-169
    [73]
    Ridgway, P., Brown, K.D., Rangasamy, D. et al. J. Biol. Chem., 279 (2004),pp. 43815-43820
    [74]
    Robinson, P.J., Rhodes, D. Structure of the ‘30 nm’ chromatin fibre: a key role for the linker histone Curr. Opin. Struct. Biol., 16 (2006),pp. 336-343
    [75]
    Sakai, A., Schwartz, B.E., Goldstein, S. et al. Curr. Biol., 19 (2009),pp. 1816-1820
    [76]
    Santenard, A., Ziegler-Birling, C., Koch, M. et al. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3 Nat. Cell Biol., 12 (2010),pp. 853-862
    [77]
    Sarcinella, E., Zuzarte, P.C., Lau, P.N. et al. Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin Mol. Cell. Biol., 27 (2007),pp. 6457-6468
    [78]
    Schwartzentruber, J., Korshunov, A., Liu, X.Y. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma Nature, 482 (2012),pp. 226-231
    [79]
    Shi, L., Wang, J., Hong, F. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 10574-10578
    [80]
    Sturm, D., Witt, H., Hovestadt, V. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma Cancer Cell, 22 (2012),pp. 425-437
    [81]
    Sutcliffe, E.L., Parish, I.A., He, Y.Q. et al. Dynamic histone variant exchange accompanies gene induction in T cells Mol. Cell. Biol., 29 (2009),pp. 1972-1986
    [82]
    Suto, R.K., Clarkson, M.J., Tremethick, D.J. et al. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z Nat. Struct. Biol., 7 (2000),pp. 1121-1124
    [83]
    Suva, M.L., Riggi, N., Janiszewska, M. et al. EZH2 is essential for glioblastoma cancer stem cell maintenance Cancer Res., 69 (2009),pp. 9211-9218
    [84]
    Szenker, E., Lacoste, N., Almouzni, G. Cell Rep., 1 (2012),pp. 730-740
    [85]
    Szenker, E., Ray-Gallet, D., Almouzni, G. The double face of the histone variant H3.3 Cell Res., 21 (2011),pp. 421-434
    [86]
    Tagami, H., Ray-Gallet, D., Almouzni, G. et al. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis Cell, 116 (2004),pp. 51-61
    [87]
    Torres-Padilla, M.E., Bannister, A.J., Hurd, P.J. et al. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos Int. J. Dev. Biol., 50 (2006),pp. 455-461
    [88]
    van Daal, A., Elgin, S.C. Mol. Biol. Cell, 3 (1992),pp. 593-602
    [89]
    van der Heijden, G.W., Derijck, A.A., Posfai, E. et al. Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation Nat. Genet., 39 (2007),pp. 251-258
    [90]
    van der Heijden, G.W., Dieker, J.W., Derijck, A.A. et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote Mech. Dev., 122 (2005),pp. 1008-1022
    [91]
    Venneti, S., Garimella, M.T., Sullivan, L.M. et al. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas Brain Pathol (2013)
    [92]
    Wong, L.H., McGhie, J.D., Sim, M. et al. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells Genome Res., 20 (2010),pp. 351-360
    [93]
    Wong, L.H., Ren, H., Williams, E. et al. Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells Genome Res., 19 (2009),pp. 404-414
    [94]
    Wong, M.M., Cox, L.K., Chrivia, J.C. The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters J. Biol. Chem., 282 (2007),pp. 26132-26139
    [95]
    Wu, G., Broniscer, A., McEachron, T.A. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas Nat. Genet., 44 (2012),pp. 251-253
    [96]
    Yuan, W., Wu, T., Fu, H. et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation Science, 337 (2012),pp. 971-975
    [97]
    Zhang, H., Roberts, D.N., Cairns, B.R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss Cell, 123 (2005),pp. 219-231
    [98]
    Zhang, R., Poustovoitov, M.V., Ye, X. et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA Dev. Cell, 8 (2005),pp. 19-30
    [99]
    Zilberman, D., Coleman-Derr, D., Ballinger, T. et al. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks Nature, 456 (2008),pp. 125-129
    [100]
    Zlatanova, J., Thakar, A. H2A.Z: view from the top Structure, 16 (2008),pp. 166-179
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (99) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return