5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 8
Aug.  2013
Turn off MathJax
Article Contents

Evolutionary and Functional Analysis of the Key Pluripotency Factor Oct4 and Its Family Proteins

doi: 10.1016/j.jgg.2013.04.011
More Information
  • Corresponding author: E-mail address: qzhou@ioz.ac.cn (Qi Zhou); E-mail address: xjwang@genetics.ac.cn (Xiu-Jie Wang)
  • Received Date: 2013-03-28
  • Accepted Date: 2013-04-15
  • Rev Recd Date: 2013-04-14
  • Available Online: 2013-06-13
  • Publish Date: 2013-08-20
  • Oct4 is one of the key pluripotent factors essential for embryonic stem cells and induced pluripotent stem (iPS) cells. Oct4 belongs to the POU domain family, which contains multiples genes with various important functions. Although the function of Oct4 has been extensively studied, detailed comparison of Oct4 with other POU family genes and their evolutionary analysis are still lacking. Here, we systematically identified POU family genes from lower to higher animal species. We observed an expansion of POU family genes in vertebrates, with an additional increment in mammalian genomes. We analyzed the phylogenetic relationship, tissue specific expression profiles and regulatory networks of POU family genes of the human genome, and predicted the putative binding microRNAs of human POU family genes. These results provide the first comprehensive evolutionary and comparative analysis of POU family genes, which will help to better understand the relationships among POU family genes and shed light on their future functional studies.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Andersen, B., Rosenfeld, M.G. POU domain factors in the neuroendocrine system: lessons from developmental biology provide insights into human disease Endocr. Rev., 22 (2001),pp. 2-35
    [2]
    Assa-Munt, N., Mortishire-Smith, R.J., Aurora, R. et al. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain Cell, 73 (1993),pp. 193-205
    [3]
    Babaie, Y., Herwig, R., Greber, B. et al. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells Stem Cells, 25 (2007),pp. 500-510
    [4]
    Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
    [5]
    Cook, A.L., Sturm, R.A. Pigment Cell Melanoma Res., 21 (2008),pp. 611-626
    [6]
    Crowther-Swanepoel, D., Broderick, P., Di Bernardo, M.C. et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk Nat. Genet., 42 (2010),pp. 132-136
    [7]
    Erkman, L., McEvilly, R.J., Luo, L. et al. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development Nature, 381 (1996),pp. 603-606
    [8]
    Goff, L.A., Davila, J., Swerdel, M.R. et al. Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors PLoS ONE, 4 (2009),p. e7192
    [9]
    Gordon, B.R.G., Li, Y.F., Wang, L.R. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),p. 18741
    [10]
    Grimson, A., Farh, K.K., Johnston, W.K. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing Mol. Cell, 27 (2007),pp. 91-105
    [11]
    Gstaiger, M., Georgiev, O., van Leeuwen, H. et al. The B cell coactivator Bob1 shows DNA sequence-dependent complex formation with Oct-1/Oct-2 factors, leading to differential promoter activation EMBO J., 15 (1996),pp. 2781-2790
    [12]
    Hammachi, F., Morrison, G.M., Sharov, A.A. et al. Cell Rep., 1 (2012),pp. 99-109
    [13]
    Heckman, C.A., Duan, H., Garcia, P.B. et al. Oncogene, 25 (2006),pp. 888-898
    [14]
    Herman, J.P., Jullien, N., Guillen, S. et al. Mol. Endocrinol., 26 (2012),pp. 1455-1463
    [15]
    Hofmann, E., Reichart, U., Gausterer, C. et al. Octamer-binding factor 6 (Oct-6/Pou3f1) is induced by interferon and contributes to dsRNA-mediated transcriptional responses BMC Cell Biol., 11 (2010),p. 61
    [16]
    Hunsaker, T.L., Jefferson, H.S., Morrison, J.K. et al. POU1F1-mediated activation of hGH-N by deoxyribonuclease I hypersensitive site II of the human growth hormone locus control region J. Mol. Biol., 415 (2012),pp. 29-45
    [17]
    Kastler, S., Honold, L., Luedeke, M. et al. Prostate, 70 (2010),pp. 666-674
    [18]
    Kusenda, B., Mraz, M., Mayer, J. et al. MicroRNA biogenesis, functionality and cancer relevance Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub., 150 (2006),pp. 205-215
    [19]
    Lau, F., Ahfeldt, T., Osafune, K. et al. Induced pluripotent stem (iPS) cells: an up-to-the-minute review F1000 Biol. Rep., 1 (2009),p. 84
    [20]
    Li, J., Pan, G.J., Cui, K. et al. A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells J. Biol. Chem., 282 (2007),pp. 19481-19492
    [21]
    Loh, Y.H., Wu, Q., Chew, J.L. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells Nat. Genet., 38 (2006),pp. 431-440
    [22]
    Looijenga, L.H., Stoop, H., de Leeuw, H.P. et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors Cancer Res., 63 (2003),pp. 2244-2250
    [23]
    Mayshar, Y., Ben-David, U., Lavon, N. et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells Cell Stem Cell, 7 (2010),pp. 521-531
    [24]
    McEvilly, R.J., Erkman, L., Luo, L. et al. Nature, 384 (1996),pp. 574-577
    [25]
    Naeem, H., Kuffner, R., Zimmer, R. MIRTFnet: analysis of miRNA regulated transcription factors PLoS ONE, 6 (2011),p. e22519
    [26]
    Perotti, D., De Vecchi, G., Testi, M.A. et al. Hum. Mutat., 24 (2004),pp. 400-407
    [27]
    Pesce, M., Scholer, H.R. Oct-4: gatekeeper in the beginnings of mammalian development Stem Cells, 19 (2001),pp. 271-278
    [28]
    Punta, M., Coggill, P.C., Eberhardt, R.Y. et al. The Pfam protein families database Nucleic Acids Res., 40 (2012),pp. D290-301
    [29]
    Ryu, E.J., Wang, J.Y., Le, N. et al. Misexpression of Pou3f1 results in peripheral nerve hypomyelination and axonal loss J. Neurosci., 27 (2007),pp. 11552-11559
    [30]
    Schoeftner, S., Scarola, M., Comisso, E. et al. An Oct4-pRB axis, controlled by MiR-335, integrates stem cell self-renewal and cell cycle control Stem Cells, 1315 (2013),pp. 717-728
    [31]
    Sempere, L.F., Freemantle, S., Pitha-Rowe, I. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation Genome Biol., 5 (2004),p. R13
    [32]
    Shi, G., Jin, Y. Role of Oct4 in maintaining and regaining stem cell pluripotency Stem Cell Res. Ther., 1 (2010),p. 39
    [33]
    Shi, G., Sohn, K.C., Choi, D.K. et al. Brn2 is a transcription factor regulating keratinocyte differentiation with a possible role in the pathogenesis of lichen planus PLoS ONE, 5 (2010),p. e13216
    [34]
    Smith, M.D., Dawson, S.J., Boxer, L.M. et al. Nucleic Acids Res., 26 (1998),pp. 4100-4107
    [35]
    Sreenivasan, S., Viljoen, C.D. OCT1 identity crisis Gene, 516 (2013),pp. 190-191
    [36]
    Sterneckert, J., Hoing, S., Scholer, H.R. Concise review: Oct4 and more: the reprogramming expressway Stem Cells, 30 (2012),pp. 15-21
    [37]
    Tamura, K., Peterson, D., Peterson, N. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods Mol. Biol. Evol., 28 (2011),pp. 2731-2739
    [38]
    Urrutia, R. Exploring the role of homeobox and zinc finger proteins in pancreatic cell proliferation, differentiation, and apoptosis Int. J. Pancreatol., 22 (1997),pp. 1-14
    [39]
    Wang, X., Chen, X., Zhang, H. et al. Shared gene regulation during human somatic cell reprogramming J. Genet. Genomics, 39 (2012),pp. 613-623
    [40]
    Wang, Z., Sheng, C., Li, T. et al. Generation of tripotent neural progenitor cells from rat embryonic stem cells J. Genet. Genomics, 39 (2012),pp. 643-651
    [41]
    Wei, Zong, Yang, et al. Klf4 directly interacts with Oct4 and Sox2 to promote reprogramming Stem Cells, 22 (2009),pp. 2969-2978
    [42]
    Welter, J.F., Gali, H., Crish, J.F. et al. Regulation of human involucrin promoter activity by POU domain proteins J. Biol. Chem., 271 (1996),pp. 14727-14733
    [43]
    Wilhite, S.E., Barrett, T. Strategies to explore functional genomics data sets in NCBI's GEO database Methods Mol. Biol., 802 (2012),pp. 41-53
    [44]
    Yamanaka, S., Blau, H.M. Nuclear reprogramming to a pluripotent state by three approaches Nature, 465 (2010),pp. 704-712
    [45]
    Yang, F.K., Yao, Y.X., Jiang, Y.P. et al. Sumoylation is important for stability, subcellular localization, and transcriptional activity of SALL4, an essential stem cell transcription factor J. Biol. Chem., 287 (2012),pp. 38600-38608
    [46]
    Zhang, L., Ju, X., Cheng, Y. et al. BMC Syst. Biol., 5 (2011),p. 152
    [47]
    Zhao, X.Y., Li, W., Lv, Z. et al. iPS cells produce viable mice through tetraploid complementation Nature, 461 (2009),pp. 86-90
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return