5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 6
Jun.  2013
Turn off MathJax
Article Contents

Characterization of the Drosophila Atlastin Interactome Reveals VCP as a Functionally Related Interactor

doi: 10.1016/j.jgg.2013.04.008
More Information
  • Corresponding author: E-mail address: n.osullivan@imperial.ac.uk (Niamh C. O'Sullivan); E-mail address: c.okane@gen.cam.ac.uk (Cahir J. O'Kane)
  • Received Date: 2013-03-01
  • Accepted Date: 2013-04-30
  • Rev Recd Date: 2013-04-29
  • Available Online: 2013-05-09
  • Publish Date: 2013-06-20
  • At least 25 genes, many involved in trafficking, localisation or shaping of membrane organelles, have been identified as causative genes for the neurodegenerative disorder hereditary spastic paraplegia (HSP). One of the most commonly mutated HSP genes, atlastin-1, encodes a dynamin-like GTPase that mediates homotypic fusion of endoplasmic reticulum (ER) membranes. However, the molecular mechanisms of atlastin-1-related membrane fusion and axonopathy remain unclear. To better understand its mode of action, we used affinity purification coupled with mass spectrometry to identify protein interactors of atlastin in Drosophila. Analysis of 72 identified proteins revealed that the atlastin interactome contains many proteins involved in protein processing and transport, in addition to proteins with roles in mRNA binding, metabolism and mitochondrial proteins. The highest confidence interactor from mass spectrometry analysis, the ubiquitin-selective AAA-ATPase valosin-containing protein (VCP), was validated as an atlastin-interacting protein, and VCP and atlastin showed overlapping subcellular distributions. Furthermore, VCP acted as a genetic modifier of atlastin: loss of VCP partially suppressed an eye phenotype caused by atlastin overexpression, whereas overexpression of VCP enhanced this phenotype. These interactions between atlastin and VCP suggest a functional relationship between these two proteins, and point to potential shared mechanisms between HSP and other forms of neurodegeneration.
  • Current address: 4th Floor, Burlington Danes Building, Department of Medicine, Imperial College London, W12 0NN, United Kingdom.
  • loading
  • [1]
    Agola, J., Jim, P., Ward, H. et al. Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities Clin. Genet., 80 (2011),pp. 305-318
    [2]
    Bian, X., Klemm, R.W., Liu, T.Y. et al. Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 3976-3981
    [3]
    Blackstone, C., O'Kane, C.J., Reid, E. Hereditary spastic paraplegias: membrane traffic and the motor pathway Nat. Rev. Neurosci., 12 (2011),pp. 31-42
    [4]
    Borner, G.H., Lilley, K.S., Stevens, T.J. et al. Plant Physiol., 132 (2003),pp. 568-577
    [5]
    Byrnes, L.J., Sondermann, H. Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 2216-2221
    [6]
    Chang, Y.C., Hung, W.T., Chang, Y.C. et al. PLoS Genet., 7 (2011),p. e1001288
    [7]
    Chen, C.Y., Balch, W.E. The Hsp90 chaperone complex regulates GDI-dependent Rab recycling Mol. Biol. Cell, 17 (2006),pp. 3494-3507
    [8]
    Clemen, C.S., Tangavelou, K., Strucksberg, K.H. et al. Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases Brain, 133 (2010),pp. 2920-2941
    [9]
    de Bot, S.T., Schelhaas, H.J., Kamsteeg, E.J. et al. Brain, 135 (2012),p. e223
    [10]
    Evans, K., Keller, C., Pavur, K. et al. Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 10666-10671
    [11]
    Fassier, C., Hutt, J.A., Scholpp, S. et al. Nat. Neurosci., 13 (2010),pp. 1380-1387
    [12]
    Freeman, M. Cell, 87 (1996),pp. 651-660
    [13]
    Guelly, C., Zhu, P.P., Leonardis, L. et al. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I Am. J. Hum. Genet., 88 (2011),pp. 99-105
    [14]
    Greenberg, S.A., Watts, G.D., Kimonis, V.E. et al. Nuclear localization of valosin-containing protein in normal muscle and muscle affected by inclusion-body myositis Muscle Nerve, 36 (2007),pp. 447-454
    [15]
    Hazelett, D.J., Bourouis, M., Walldorf, U. et al. Decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc Development, 125 (1998),pp. 3741-3751
    [16]
    Hu, J., Shibata, Y., Zhu, P.P. et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network Cell, 138 (2009),pp. 549-561
    [17]
    Huang da, W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat. Protoc., 4 (2009),pp. 44-57
    [18]
    Johnson, J.O., Mandrioli, J., Benatar, M. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS Neuron, 68 (2010),pp. 857-864
    [19]
    Kano, F., Kondo, H., Yamamoto, A. et al. NSF/SNAPs and p97/p47/VCIP135 are sequentially required for cell cycle-dependent reformation of the ER network Genes Cells, 10 (2005),pp. 989-999
    [20]
    Lee, Y., Paik, D., Bang, S. et al. Neurobiol. Aging, 29 (2008),pp. 84-94
    [21]
    Lee, M., Paik, S.K., Lee, M.J. et al. Dev. Biol., 330 (2009),pp. 250-262
    [22]
    León, A., McKearin, D. Mol. Biol. Cell, 10 (1999),pp. 3825-3834
    [23]
    Liu, T.Y., Bian, X., Sun, S. et al. Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2146-E2154
    [24]
    Madsen, L., Seeger, M., Semple, C.A. et al. New ATPase regulators–p97 goes to the PUB Int. J. Biochem. Cell Biol., 41 (2009),pp. 2380-2388
    [25]
    Meyer, H., Bug, M., Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system Nat. Cell Biol., 14 (2012),pp. 117-123
    [26]
    Montenegro, G., Rebelo, A.P., Connell, J. et al. Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12 J. Clin. Invest., 122 (2012),pp. 538-544
    [27]
    Moss, T.J., Andreazza, C., Verma, A. et al. Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 11133-11138
    [28]
    Murali, T., Pacifico, S., Yu, J. et al. Nucleic Acids Res., 39 (2011),pp. D736-D743
    [29]
    Namekawa, M., Muriel, M.P., Janer, A. et al. Mol. Cell. Neurosci., 35 (2007),pp. 1-13
    [30]
    Orso, G., Pendin, D., Liu, S. et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin Nature, 460 (2009),pp. 978-983
    [31]
    O'Sullivan, N.C., Jahn, T.R., Reid, E. et al. Hum. Mol. Genet., 21 (2012),pp. 3356-3365
    [32]
    Park, S.H., Zhu, P.P., Parker, R.L. et al. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network J. Clin. Invest., 120 (2010),pp. 1097-1110
    [33]
    Ramanathan, H.N., Ye, Y. The p97 ATPase associates with EEA1 to regulate the size of early endosomes Cell Res., 22 (2012),pp. 346-359
    [34]
    Renaud, Y., Baillif, A., Perez, J.B. et al. Nucleic Acids Res., 40 (2012),pp. W134-W139
    [35]
    Ritson, G.P., Custer, S.K., Freibaum, B.D. et al. J. Neurosci., 30 (2010),pp. 7729-7739
    [36]
    Ritz, D., Vuk, M., Kirchner, P. et al. Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations Nat. Cell Biol., 13 (2011),pp. 1116-1123
    [37]
    Roy, L., Bergeron, J.J., Lavoie, C. et al. Role of p97 and syntaxin 5 in the assembly of transitional endoplasmic reticulum Mol. Biol. Cell, 11 (2000),pp. 2529-2542
    [38]
    Ruden, D.M., Sollars, V., Wang, X. et al. Dev. Biol., 218 (2000),pp. 314-325
    [39]
    Salinas, S., Proukakis, C., Crosby, A. et al. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms Lancet Neurol., 7 (2008),pp. 1127-1138
    [40]
    Sanderson, C.M., Connell, J.W., Edwards, T.L. et al. Spastin and atlastin, two proteins mutated in autosomal-dominant hereditary spastic paraplegia, are binding partners Hum. Mol. Genet., 15 (2006),pp. 307-318
    [41]
    Schuster, C.M., Davis, G.W., Fetter, R.D. et al. Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth Neuron, 17 (1996),pp. 641-654
    [42]
    Shannon, P., Markiel, A., Ozier, O. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks Genome Res., 13 (2003),pp. 2498-2504
    [43]
    Song, C., Wang, Q., Li, C.C. ATPase activity of p97-valosin-containing protein (VCP). D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity J. Biol. Chem., 278 (2003),pp. 3648-3655
    [44]
    Stewart, B.A., Atwood, H.L., Renger, J.J. et al. J. Comp. Physiol. A, 175 (1994),pp. 179-191
    [45]
    Stolz, A., Hilt, W., Buchberger, A. et al. Cdc48: a power machine in protein degradation Trends Biochem. Sci., 36 (2011),pp. 515-523
    [46]
    Tanaka, A., Cleland, M.M., Xu, S. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin J. Cell Biol., 191 (2010),pp. 1367-1380
    [47]
    Totsukawa, G., Kaneko, Y., Uchiyama, K. et al. VCIP135 deubiquitinase and its binding protein, WAC, in p97ATPase-mediated membrane fusion EMBO J., 30 (2011),pp. 3581-3593
    [48]
    Waugh, M.G., Minogue, S., Anderson, J.S. et al. Localization of a highly active pool of type II phosphatidylinositol 4-kinase in a p97/valosin-containing-protein-rich fraction of the endoplasmic reticulum Biochem. J., 373 (2003),pp. 57-63
    [49]
    Watts, G.D., Wymer, J., Kovach, M.J. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein Nat. Genet., 36 (2004),pp. 377-381
    [50]
    Xu, S., Peng, G., Wang, Y. et al. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover Mol. Biol. Cell, 22 (2011),pp. 291-300
    [51]
    Ye, Y., Meyer, H.H., Rapoport, T.A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol Nature, 414 (2001),pp. 652-656
    [52]
    Zhao, X., Alvarado, D., Rainier, S. et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia Nat. Genet., 29 (2001),pp. 326-331
    [53]
    Zhu, P.P., Patterson, A., Lavoie, B. et al. Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin J. Biol. Chem., 278 (2003),pp. 49063-49071
    [54]
    Züchner, S., Wang, G., Tran-Viet, K.N. et al. Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31 Am. J. Hum. Genet., 79 (2006),pp. 365-369
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return