5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 7
Jul.  2013
Turn off MathJax
Article Contents

The Epigenetic Switches for Neural Development and Psychiatric Disorders

doi: 10.1016/j.jgg.2013.04.007
More Information
  • Corresponding author: E-mail address: zhou_wenhao@yahoo.com.cn (Wenhao Zhou); E-mail address: zqiu@ion.ac.cn (Zilong Qiu)
  • Received Date: 2013-01-26
  • Accepted Date: 2013-04-30
  • Rev Recd Date: 2013-04-19
  • Available Online: 2013-05-09
  • Publish Date: 2013-07-20
  • The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted.
  • loading
  • [1]
    Aimone, J.B., Deng, W., Gage, F.H. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation Neuron, 70 (2011),pp. 589-596
    [2]
    Amir, R.E., Van den Veyver, I.B., Wan, M. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 Nat. Genet., 23 (1999),pp. 185-188
    [3]
    Ballas, N., Grunseich, C., Lu, D.D. et al. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis Cell, 121 (2005),pp. 645-657
    [4]
    Barik, J., Marti, F., Morel, C. et al. Science, 339 (2013),pp. 332-335
    [5]
    Blackman, M.P., Djukic, B., Nelson, S.B. et al. A critical and cell-autonomous role for MeCP2 in synaptic scaling up J. Neurosci., 32 (2012),pp. 13529-13536
    [6]
    Chahrour, M., Zoghbi, H.Y. The story of Rett syndrome: from clinic to neurobiology Neuron, 56 (2007),pp. 422-437
    [7]
    Chen, W.G., Chang, Q., Lin, Y. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2 Science, 302 (2003),pp. 885-889
    [8]
    Chestnut, B.A., Chang, Q., Price, A. et al. Epigenetic regulation of motor neuron cell death through DNA methylation J. Neurosci., 31 (2011),pp. 16619-16636
    [9]
    Chong, J.A., Tapia-Ramirez, J., Kim, S. et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons Cell, 80 (1995),pp. 949-957
    [10]
    Coskun, V., Tsoa, R., Sun, Y.E. Epigenetic regulation of stem cells differentiating along the neural lineage Curr. Opin. Neurobiol., 22 (2012),pp. 762-767
    [11]
    Day, J.J., Sweatt, J.D. DNA methylation and memory formation Nat. Neurosci., 13 (2010),pp. 1319-1323
    [12]
    Day, J.J., Sweatt, J.D. Epigenetic mechanisms in cognition Neuron, 70 (2011),pp. 813-829
    [13]
    Faigle, R., Song, H. Signaling mechanisms regulating adult neural stem cells and neurogenesis Biochim. Biophys. Acta, 1830 (2012),pp. 2435-2448
    [14]
    Fan, G., Martinowich, K., Chin, M.H. et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling Development, 132 (2005),pp. 3345-3356
    [15]
    Feng, J., Zhou, Y., Campbell, S.L. et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons Nat. Neurosci., 13 (2010),pp. 423-430
    [16]
    Fischer, A., Sananbenesi, F., Wang, X. et al. Recovery of learning and memory is associated with chromatin remodelling Nature, 447 (2007),pp. 178-182
    [17]
    Gao, J., Wang, W.Y., Mao, Y.W. et al. Nature, 466 (2010),pp. 1105-1109
    [18]
    Graff, J., Tsai, L.H. The potential of HDAC inhibitors as cognitive enhancers Annu. Rev. Pharmacol. Toxicol., 53 (2013),pp. 311-330
    [19]
    Guan, J.S., Haggarty, S.J., Giacometti, E. et al. HDAC2 negatively regulates memory formation and synaptic plasticity Nature, 459 (2009),pp. 55-60
    [20]
    Guo, J.U., Ma, D.K., Mo, H. et al. Neuronal activity modifies the DNA methylation landscape in the adult brain Nat. Neurosci., 14 (2011),pp. 1345-1351
    [21]
    Guo, J.U., Su, Y., Zhong, C. et al. Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond Cell Cycle, 10 (2011),pp. 2662-2668
    [22]
    Guo, J.U., Su, Y., Zhong, C. et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain Cell, 145 (2011),pp. 423-434
    [23]
    Guy, J., Cheval, H., Selfridge, J. et al. The role of MeCP2 in the brain Annu. Rev. Cell Dev. Biol., 27 (2011),pp. 631-652
    [24]
    Guy, J., Gan, J., Selfridge, J. et al. Reversal of neurological defects in a mouse model of Rett syndrome Science, 315 (2007),pp. 1143-1147
    [25]
    Hamby, M.E., Coskun, V., Sun, Y.E. Transcriptional regulation of neuronal differentiation: the epigenetic layer of complexity Biochim. Biophys. Acta, 1779 (2008),pp. 432-437
    [26]
    He, Y.F., Li, B.Z., Li, Z. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA Science, 333 (2011),pp. 1303-1307
    [27]
    Hubel, D.H., Wiesel, T.N. Early exploration of the visual cortex Neuron, 20 (1998),pp. 401-412
    [28]
    Hwang, J.Y., Aromolaran, K.A., Zukin, R.S. Epigenetic mechanisms in stroke and epilepsy Neuropsychopharmacology, 38 (2013),pp. 167-182
    [29]
    Ito, S., Shen, L., Dai, Q. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine Science, 333 (2011),pp. 1300-1303
    [30]
    Klein, M.E., Lioy, D.T., Ma, L. et al. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA Nat. Neurosci., 10 (2007),pp. 1513-1514
    [31]
    Kwok, J.B. Role of epigenetics in Alzheimer's and Parkinson's disease Epigenomics, 2 (2010),pp. 671-682
    [32]
    Lewis, J.D., Meehan, R.R., Henzel, W.J. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA Cell, 69 (1992),pp. 905-914
    [33]
    Lunke, S., El-Osta, A. The emerging role of epigenetic modifications and chromatin remodeling in spinal muscular atrophy J. Neurochem., 109 (2009),pp. 1557-1569
    [34]
    Lunyak, V.V., Burgess, R., Prefontaine, G.G. et al. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes Science, 298 (2002),pp. 1747-1752
    [35]
    Ma, D.K., Jang, M.H., Guo, J.U. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis Science, 323 (2009),pp. 1074-1077
    [36]
    Magill, S.T., Cambronne, X.A., Luikart, B.W. et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 20382-20387
    [37]
    Majdan, M., Shatz, C.J. Effects of visual experience on activity-dependent gene regulation in cortex Nat. Neurosci., 9 (2006),pp. 650-659
    [38]
    Martinowich, K., Hattori, D., Wu, H. et al. Science, 302 (2003),pp. 890-893
    [39]
    Massart, R., Mongeau, R., Lanfumey, L. Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression Philos. Trans. R Soc. Lond. B Biol. Sci., 367 (2012),pp. 2485-2494
    [40]
    Miller, B.H., Zeier, Z., Xi, L. et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 3125-3130
    [41]
    Miller, C.A., Gavin, C.F., White, J.A. et al. Cortical DNA methylation maintains remote memory Nat. Neurosci., 13 (2010),pp. 664-666
    [42]
    Miller, C.A., Sweatt, J.D. Covalent modification of DNA regulates memory formation Neuron, 53 (2007),pp. 857-869
    [43]
    Moretti, P., Levenson, J.M., Battaglia, F. et al. Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome J. Neurosci., 26 (2006),pp. 319-327
    [44]
    Murgatroyd, C., Patchev, A.V., Wu, Y. et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress Nat. Neurosci., 12 (2009),pp. 1559-1566
    [45]
    Nan, X., Ng, H.H., Johnson, C.A. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex Nature, 393 (1998),pp. 386-389
    [46]
    Nijhawan, D., Honarpour, N., Wang, X. Apoptosis in neural development and disease Annu. Rev. Neurosci., 23 (2000),pp. 73-87
    [47]
    Nishioka, M., Bundo, M., Kasai, K. et al. DNA methylation in schizophrenia: progress and challenges of epigenetic studies Genome Med., 4 (2012),p. 96
    [48]
    Niwa, M., Jaaro-Peled, H., Tankou, S. et al. Science, 339 (2013),pp. 335-339
    [49]
    Qiu, Z., Ghosh, A. A brief history of neuronal gene expression: regulatory mechanisms and cellular consequences Neuron, 60 (2008),pp. 449-455
    [50]
    Qiu, Z., Ghosh, A. A calcium-dependent switch in a CREST-BRG1 complex regulates activity-dependent gene expression Neuron, 60 (2008),pp. 775-787
    [51]
    Qiu, Z., Sylwestrak, E.L., Lieberman, D.N. et al. The Rett syndrome protein MeCP2 regulates synaptic scaling J. Neurosci., 32 (2012),pp. 989-994
    [52]
    Ramocki, M.B., Peters, S.U., Tavyev, Y.J. et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome Ann. Neurol., 66 (2009),pp. 771-782
    [53]
    Rett, A. On a unusual brain atrophy syndrome in hyperammonemia in childhood Wien. Med. Wochenschr, 116 (1966),pp. 723-726
    [54]
    Rodenas-Ruano, A., Chavez, A.E., Cossio, M.J. et al. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors Nat. Neurosci., 15 (2012),pp. 1382-1390
    [55]
    Segal, D.S., Squire, L.R., Barondes, S.H. Cycloheximide: its effects on activity are dissociable from its effects on memory Science, 172 (1971),pp. 82-84
    [56]
    Silva, A.J., Kogan, J.H., Frankland, P.W. et al. CREB and memory Annu. Rev. Neurosci., 21 (1998),pp. 127-148
    [57]
    Skene, P.J., Illingworth, R.S., Webb, S. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state Mol. Cell, 37 (2010),pp. 457-468
    [58]
    Squire, L.R., Barondes, S.H. Actinomycin-D: effects on memory at different times after training Nature, 225 (1970),pp. 649-650
    [59]
    Suh, H., Deng, W., Gage, F.H. Signaling in adult neurogenesis Annu. Rev. Cell Dev. Biol., 25 (2009),pp. 253-275
    [60]
    Tropea, D., Kreiman, G., Lyckman, A. et al. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex Nat. Neurosci., 9 (2006),pp. 660-668
    [61]
    Wu, H., Coskun, V., Tao, J. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes Science, 329 (2010),pp. 444-448
    [62]
    Zhao, C., Deng, W., Gage, F.H. Mechanisms and functional implications of adult neurogenesis Cell, 132 (2008),pp. 645-660
    [63]
    Zhong, X., Li, H., Chang, Q. MeCP2 phosphorylation is required for modulating synaptic scaling through mGluR5 J. Neurosci., 32 (2012),pp. 12841-12847
    [64]
    Zhou, Z., Hong, E.J., Cohen, S. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation Neuron, 52 (2006),pp. 255-269
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (88) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return