[1] |
Abate-Shen, C., Banach-Petrosky, W.A., Sun, X. et al. Cancer Res., 63 (2003),pp. 3886-3890
|
[2] |
Abdulkadir, S.A., Magee, J.A., Peters, T.J. et al. Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia Mol. Cell. Biol., 22 (2002),pp. 1495-1503
|
[3] |
Anderson, P.D., McKissic, S.A., Logan, M. et al. Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis J. Clin. Invest., 122 (2012),pp. 1907-1919
|
[4] |
Bhatia-Gaur, R., Donjacour, A.A., Sciavolino, P.J. et al. Roles for Nkx3.1 in prostate development and cancer Genes Dev., 13 (1999),pp. 966-977
|
[5] |
Chen, C., Bhalala, H.V., Vessella, R.L. et al. KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer Prostate, 55 (2003),pp. 81-88
|
[6] |
Chen, C., Brabham, W.W., Stultz, B.G. et al. Defining a common region of deletion at 13q21 in human cancers Genes Chromosomes Cancer, 31 (2001),pp. 333-344
|
[7] |
Dong, J.T. Chromosomal deletions and tumor suppressor genes in prostate cancer Cancer Metastasis Rev., 20 (2001),pp. 173-193
|
[8] |
Dong, J.T., Chen, C., Stultz, B.G. et al. Deletion at 13q21 is associated with aggressive prostate cancers Cancer Res., 60 (2000),pp. 3880-3883
|
[9] |
Guo, P., Dong, X.Y., Zhao, K.W. et al. J. Biol. Chem., 284 (2009),pp. 28243-28252
|
[10] |
He, W.W., Sciavolino, P.J., Wing, J. et al. Genomics, 43 (1997),pp. 69-77
|
[11] |
Iwata, T., Schultz, D., Hicks, J. et al. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells PLoS ONE, 5 (2010)
|
[12] |
Knuutila, S., Bjorkqvist, A.M., Autio, K. et al. DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies Am. J. Pathol., 152 (1998),pp. 1107-1123
|
[13] |
Knuutila, S., Aalto, Y., Autio, K. et al. DNA copy number losses in human neoplasms Am. J. Pathol., 155 (1999),pp. 683-694
|
[14] |
Li, J., Yen, C., Liaw, D. et al. Science, 275 (1997),pp. 1943-1947
|
[15] |
Nakajima, Y., Akaogi, K., Suzuki, T. et al. Estrogen regulates tumor growth through a nonclassical pathway that includes the transcription factors ERβ and KLF5 Sci. Signal., 4 (2011)
|
[16] |
Pan, Y., Lui, W.O., Nupponen, N. et al. 5q11, 8p11, and 10q22 are recurrent chromosomal breakpoints in prostate cancer cell lines Genes Chromosomes Cancer, 30 (2001),pp. 187-195
|
[17] |
Shappell, S.B., Thomas, G.V., Roberts, R.L. et al. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee Cancer Res., 64 (2004),pp. 2270-2305
|
[18] |
Sun, X., Frierson, H.F., Chen, C. et al. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer Nat. Genet., 37 (2005),pp. 407-412
|
[19] |
Valkenburg, K.C., Williams, B.O. Mouse models of prostate cancer Prostate Cancer, 2011 (2011),p. 895238
|
[20] |
Wang, S., Gao, J., Lei, Q. et al. Cancer Cell, 4 (2003),pp. 209-221
|