5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 6
Jun.  2013
Turn off MathJax
Article Contents

TALEN or Cas9 – Rapid, Efficient and Specific Choices for Genome Modifications

doi: 10.1016/j.jgg.2013.03.013
More Information
  • Precise modifications of complex genomes at the single nucleotide level have been one of the big goals for scientists working in basic and applied genetics, including biotechnology, drug development, gene therapy and synthetic biology. However, the relevant techniques for making these manipulations in model organisms and human cells have been lagging behind the rapid high throughput studies in the post-genomic era with a bottleneck of low efficiency, time consuming and laborious manipulation, and off-targeting problems. Recent discoveries of TALEs (transcription activator-like effectors) coding system and CRISPR (clusters of regularly interspaced short palindromic repeats) immune system in bacteria have enabled the development of customized TALENs (transcription activator-like effector nucleases) and CRISPR/Cas9 to rapidly edit genomic DNA in a variety of cell types, including human cells, and different model organisms at a very high efficiency and specificity. In this review, we first briefly summarize the development and applications of TALENs and CRISPR/Cas9-mediated genome editing technologies; compare the advantages and constraints of each method; particularly, discuss the expected applications of both techniques in the field of site-specific genome modification and stem cell based gene therapy; finally, propose the future directions and perspectives for readers to make the choices.
  • loading
  • [1]
    Barnes, D.E. Non-homologous end joining as a mechanism of DNA repair Curr. Biol., 11 (2001),pp. R455-R457
    [2]
    Bedell, V.M., Wang, Y., Campbell, J.M. et al. Nature, 491 (2012),pp. 114-118
    [3]
    Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
    [4]
    Bibikova, M., Beumer, K., Trautman, J.K. et al. Enhancing gene targeting with designed zinc finger nucleases Science, 300 (2003),p. 764
    [5]
    Boch, J., Bonas, U. Annu. Rev. Phytopathol., 48 (2010),pp. 419-436
    [6]
    Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
    [7]
    Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
    [8]
    Bolotin, A., Quinquis, B., Sorokin, A. et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin Microbiology, 151 (2005),pp. 2551-2561
    [9]
    Bonas, U., Stall, R.E., Staskawicz, B. Mol. Gen. Genet., 218 (1989),pp. 127-136
    [10]
    Briggs, A.W., Rios, X., Chari, R. et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers Nucleic Acids Res., 40 (2012),p. e117
    [11]
    Carlson, D.F., Tan, W., Lillico, S.G. et al. Efficient TALEN-mediated gene knockout in livestock Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17382-17387
    [12]
    Carroll, D. A CRISPR approach to gene targeting Mol. Ther., 20 (2012),pp. 1658-1660
    [13]
    Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [14]
    Chen, F., Pruett-Miller, S.M., Huang, Y. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases Nat. Methods, 8 (2011),pp. 753-755
    [15]
    Chen, Y., Dui, W., Yu, Z. et al. Protein Cell, 1 (2010),pp. 478-490
    [16]
    Cho, S.W., Kim, S., Kim, J.M. et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease Nat. Biotechnol., 31 (2013),pp. 230-232
    [17]
    Choi, S.M., Kim, Y., Shim, J.S. et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells Hepatology (2013)
    [18]
    Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
    [19]
    Cong, L., Zhou, R., Kuo, Y.C. et al. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains Nat. Commun., 3 (2012),p. 968
    [20]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [21]
    Cradick, T.J., Ambrosini, G., Iseli, C. et al. ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites BMC Bioinformatics, 12 (2011),p. 152
    [22]
    Deng, D., Yan, C., Pan, X. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors Science, 335 (2012),pp. 720-723
    [23]
    Ding, Q., Lee, Y.K., Schaefer, E.A. et al. A TALEN genome-editing system for generating human stem cell-based disease models Cell Stem Cell, 12 (2013),pp. 238-251
    [24]
    Du, G., Liu, X., Chen, X. et al. Mol. Biol. Cell, 21 (2010),pp. 2128-2137
    [25]
    Dui, W., Lu, W., Ma, J. et al. J. Genet. Genomics, 39 (2012),pp. 397-413
    [26]
    Eeken, J.C., Sobels, F.H. Mutat. Res., 110 (1983),pp. 297-310
    [27]
    Esvelt, K.M., Wang, H.H. Genome-scale engineering for systems and synthetic biology Mol. Syst. Biol., 9 (2013),p. 641
    [28]
    Garg, A., Lohmueller, J.J., Silver, P.A. et al. Engineering synthetic TAL effectors with orthogonal target sites Nucleic Acids Res., 40 (2012),pp. 7584-7595
    [29]
    Garneau, J.E., Dupuis, M.E., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature, 468 (2010),pp. 67-71
    [30]
    Gasiunas, G., Barrangou, R., Horvath, P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2579-E2586
    [31]
    Golic, K.G., Golic, M.M. Genetics, 144 (1996),pp. 1693-1711
    [32]
    Groth, A.C., Fish, M., Nusse, R. et al. Genetics, 166 (2004),pp. 1775-1782
    [33]
    Hale, C.R., Zhao, P., Olson, S. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell, 139 (2009),pp. 945-956
    [34]
    Hockemeyer, D., Wang, H., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
    [35]
    Horvath, P., Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea Science, 327 (2010),pp. 167-170
    [36]
    Huang, H., Jiao, R. Roles of chromatin assembly factor 1 in the epigenetic control of chromatin plasticity Sci. China Life. Sci., 55 (2012),pp. 15-19
    [37]
    Huang, H., Yu, Z., Zhang, S. et al. J. Cell Sci., 123 (2010),pp. 2853-2861
    [38]
    Huang, H., Du, G., Chen, H. et al. Development, 138 (2011),pp. 2477-2485
    [39]
    Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
    [40]
    Huang, P., Zhu, Z., Lin, S. et al. Reverse genetic approaches in zebrafish J. Genet. Genomics, 39 (2012),pp. 421-433
    [41]
    Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
    [42]
    Ishino, Y., Shinagawa, H., Makino, K. et al. J. Bacteriol., 169 (1987),pp. 5429-5433
    [43]
    Jiang, W., Bikard, D., Cox, D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 233-239
    [44]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [45]
    Jinek, M., East, A., Cheng, A. et al. RNA-programmed genome editing in human cells eLife, 2 (2013),p. e00471
    [46]
    Jore, M.M., Lundgren, M., van Duijn, E. et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade Nat. Struct. Mol. Biol., 18 (2011),pp. 529-536
    [47]
    Karginov, F.V., Hannon, G.J. The CRISPR system: small RNA-guided defense in bacteria and archaea Mol. Cell, 37 (2010),pp. 7-19
    [48]
    Kay, S., Hahn, S., Marois, E. et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator Science, 318 (2007),pp. 648-651
    [49]
    Kim, Y.G., Cha, J., Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 1156-1160
    [50]
    Lei, Y., Guo, X., Liu, Y. et al. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17484-17489
    [51]
    Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
    [52]
    Li, T., Huang, S., Zhao, X. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes Nucleic Acids Res., 39 (2011),pp. 6315-6325
    [53]
    Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway Annu. Rev. Biochem., 79 (2010),pp. 181-211
    [54]
    Liu, J., Wu, Q., He, D. et al. J. Genet. Genomics, 38 (2011),pp. 225-234
    [55]
    Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
    [56]
    Maeder, M.L., Linder, S.J., Reyon, D. et al. Robust, synergistic regulation of human gene expression using TALE activators Nat. Methods, 10 (2013),pp. 243-245
    [57]
    Mak, A.N., Bradley, P., Cernadas, R.A. et al. The crystal structure of TAL effector PthXo1 bound to its DNA target Science, 335 (2012),pp. 716-719
    [58]
    Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [59]
    Marx, J.L. Science, 218 (1982),pp. 364-365
    [60]
    Melton, D.W. Gene targeting in the mouse Bioessays, 16 (1994),pp. 633-638
    [61]
    Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
    [62]
    Morbitzer, R., Romer, P., Boch, J. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 21617-21622
    [63]
    Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
    [64]
    Ochiai, H., Sakamoto, N., Fujita, K. et al. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 10915-10920
    [65]
    Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
    [66]
    Reyon, D., Khayter, C., Regan, M.R. et al. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly Curr. Protoc. Mol. Biol. (2012)
    [67]
    Reyon, D., Tsai, S.Q., Khayter, C. et al. FLASH assembly of TALENs for high-throughput genome editing Nat. Biotechnol., 30 (2012),pp. 460-465
    [68]
    Romer, P., Hahn, S., Jordan, T. et al. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene Science, 318 (2007),pp. 645-648
    [69]
    Rubin, G.M., Spradling, A.C. Science, 218 (1982),pp. 348-353
    [70]
    Sanjana, N.E., Cong, L., Zhou, Y. et al. A transcription activator-like effector toolbox for genome engineering Nat. Protoc., 7 (2012),pp. 171-192
    [71]
    Shen, Y., Huang, P., Zhang, B. A protocol for TALEN construction and gene targeting in zebrafish Hereditas (Beijing), 35 (2013),pp. 533-544
    [72]
    Shen, Y., Xiao, A., Huang, P. et al. TALE nuclease engineering and targeted genome modification Hereditas (Beijing), 35 (2013),pp. 395-409
    [73]
    Solnica-Krezel, L., Schier, A.F., Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline Genetics, 136 (1994),pp. 1401-1420
    [74]
    Song, Y., He, F., Xie, G. et al. Dev. Biol., 311 (2007),pp. 213-222
    [75]
    Sorek, R., Kunin, V., Hugenholtz, P. CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea Nat. Rev. Microbiol., 6 (2008),pp. 181-186
    [76]
    Streubel, J., Blucher, C., Landgraf, A. et al. TAL effector RVD specificities and efficiencies Nat. Biotechnol., 30 (2012),pp. 593-595
    [77]
    Sun, N., Liang, J., Abil, Z. et al. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease Mol. Biosyst., 8 (2012),pp. 1255-1263
    [78]
    Sung, Y.H., Baek, I.J., Kim, D.H. et al. Knockout mice created by TALEN-mediated gene targeting Nat. Biotechnol., 31 (2013),pp. 23-24
    [79]
    Tesson, L., Usal, C., Menoret, S. et al. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
    [80]
    Thomas, K.R., Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells Cell, 51 (1987),pp. 503-512
    [81]
    Tong, C., Huang, G., Ashton, C. et al. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs J. Genet. Genomics, 39 (2012),pp. 275-280
    [82]
    Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
    [83]
    van den Bosch, M., Lohman, P.H., Pastink, A. DNA double-strand break repair by homologous recombination Biol. Chem., 383 (2002),pp. 873-892
    [84]
    Weber, E., Gruetzner, R., Werner, S. et al. Assembly of designer TAL effectors by Golden Gate cloning PLoS ONE, 6 (2011),p. e19722
    [85]
    Wood, A.J., Lo, T.W., Zeitler, B. et al. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
    [86]
    Xie, G., Zhang, H., Du, G. et al. PLoS ONE, 7 (2012),p. e36362
    [87]
    Xu, T., Rubin, G.M. Development, 117 (1993),pp. 1223-1237
    [88]
    Xu, Y., Lei, Z., Huang, H. et al. PLoS ONE, 4 (2009),p. e6107
    [89]
    Yu, Z.S., Jiao, R. Front. Biol., 5 (2010),pp. 238-245
    [90]
    Zhang, Y., Zhang, F., Li, X. et al. Transcription activator-like effector nucleases enable efficient plant genome engineering Plant Physiol., 161 (2013),pp. 20-27
    [91]
    Zu, Y., Tong, X., Wang, Z. et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish Nat. Methods (2013)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return