5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 5
May  2013
Turn off MathJax
Article Contents

An in vivo Transient Expression System Can Be Applied for Rapid and Effective Selection of Artificial MicroRNA Constructs for Plant Stable Genetic Transformation

doi: 10.1016/j.jgg.2013.03.012
More Information
  • Corresponding author: E-mail address: gtang1@mtu.edu (Guiliang Tang); E-mail address: yu.xiang@agr.gc.ca (Yu Xiang)
  • Received Date: 2013-03-06
  • Accepted Date: 2013-03-24
  • Rev Recd Date: 2013-03-23
  • Available Online: 2013-04-11
  • Publish Date: 2013-05-20
  • The utility of artificial microRNAs (amiRNAs) to induce loss of gene function has been reported for many plant species, but expression efficiency of the different amiRNA constructs in different transgenic plants was less predictable. In this study, expressions of amiRNAs through the gene backbone of Arabidopsis miR168a were examined by both Agrobacterium-mediated transient expression and stable plant genetic transformation. A corresponding trend in expression of amiRNAs by the same amiRNA constructs between the transient and the stable expression systems was observed in the experiments. Plant genetic transformation of the constructs that were highly expressible in amiRNAs in the transient agro-infiltration assays resulted in generation of transgenic lines with high level of amiRNAs. This provides a simple method for rapid and effective selection of amiRNA constructs used for a time-consuming genetic transformation in plants.
  • loading
  • [1]
    Ai, T., Zhang, L., Gao, Z. et al. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants Plant Biol. (Stuttg), 13 (2011),pp. 304-316
    [2]
    Altpeter, F., Vasil, V., Srivastava, V. et al. Plant Cell Rep., 16 (1996),pp. 12-17
    [3]
    Alvarez, J.P., Pekker, I., Goldshmidt, A. et al. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species Plant Cell, 18 (2006),pp. 1134-1151
    [4]
    Beaujean, A., Sangwan, R.S., Lecardonnel, A. et al. J. Exp. Bot., 49 (1998),pp. 1589-1595
    [5]
    Butaye, K.M., Goderis, I.J., Wouters, P.F. et al. Plant J., 39 (2004),pp. 440-449
    [6]
    Cheng, M., Fry, J.E., Pang, S. et al. Plant Physiol., 115 (1997),pp. 971-980
    [7]
    Duan, C.G., Wang, C.H., Fang, R.X. et al. Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants J. Virol., 82 (2008),pp. 11084-11095
    [8]
    Fahim, M., Millar, A.A., Wood, C.C. et al. Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat Plant Biotechnol. J., 10 (2012),pp. 150-163
    [9]
    Frame, B.R., Shou, H., Chikwamba, R.K. et al. Plant Physiol., 129 (2002),pp. 13-22
    [10]
    Guo, D., Maiss, E., Adam, G. et al. Prunus necrotic ringspot ilarvirus: nucleotide sequence of RNA3 and the relationship to other ilarviruses based on coat protein comparison J. Gen. Virol., 76 (1995),pp. 1073-1079
    [11]
    Hao, X., Lu, A., Sokal, N. et al. Cucumber necrosis virus p20 is a viral suppressor of RNA silencing Virus Res., 155 (2011),pp. 423-432
    [12]
    Johansen, L.K., Carrington, J.C. Plant Physiol., 126 (2001),pp. 930-938
    [13]
    Khanna, H.K., Paul, J.Y., Harding, R.M. et al. Mol. Plant Microbe Interact., 20 (2007),pp. 1048-1054
    [14]
    Khraiwesh, B., Ossowski, S., Weigel, D. et al. Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts Plant Physiol., 148 (2008),pp. 684-693
    [15]
    Kung, Y.J., Lin, S.S., Huang, Y.L. et al. Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus Mol. Plant Pathol., 13 (2012),pp. 303-317
    [16]
    Li, W., Cui, X., Meng, Z. et al. Plant Physiol., 158 (2012),pp. 1279-1292
    [17]
    Ma, J.B., Yuan, Y.R., Meister, G. et al. Nature, 434 (2005),pp. 666-670
    [18]
    Molnar, A., Bassett, A., Thuenemann, E. et al. Plant J., 58 (2009),pp. 165-174
    [19]
    Parker, J.S., Roe, S.M., Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex Nature, 434 (2005),pp. 663-666
    [20]
    Pontes, O., Pikaard, C.S. siRNA and miRNA processing: new functions for Cajal bodies Curr. Opin. Genet. Dev., 18 (2008),pp. 197-203
    [21]
    Qu, J., Ye, J., Fang, R. Artificial microRNA-mediated virus resistance in plants J. Virol., 81 (2007),pp. 6690-6699
    [22]
    Schwab, R., Ossowski, S., Warthmann, N. et al. Directed gene silencing with artificial microRNAs Methods Mol. Biol., 592 (2010),pp. 71-88
    [23]
    Schwab, R., Ossowski, S., Riester, M. et al. Plant Cell, 18 (2006),pp. 1121-1133
    [24]
    Shi, R., Yang, C., Lu, S. et al. Planta, 232 (2010),pp. 1281-1288
    [25]
    Sun, F., Xiang, Y., Sanfaçon, H. Homology-dependent resistance to tomato ringspot nepovirus in plants transformed with the VPg–protease coding region Can. J. Plant Pathol., 23 (2001),pp. 292-299
    [26]
    Tang, G., Galili, G. Using RNAi to improve plant nutritional value: from mechanism to application Trends Biotechnol., 22 (2004),pp. 463-469
    [27]
    Tang, G., Reinhart, B.J., Bartel, D.P. et al. A biochemical framework for RNA silencing in plants Genes Dev., 17 (2003),pp. 49-63
    [28]
    Tang, Y., Wang, F., Zhao, J. et al. Virus-based microRNA expression for gene functional analysis in plants Plant Physiol., 153 (2010),pp. 632-641
    [29]
    Trick, H.N., Finer, J.J. Plant Cell Rep., 17 (1998),pp. 482-488
    [30]
    Urbany, C., Stich, B., Schmidt, L. et al. BMC Genomics, 12 (2011),p. 7
    [31]
    Uyemoto, J.K., Scott, S.W. Important diseases of prunus caused by viruses and other graft-transmissible pathogens in California and South Carolina Plant Dis., 76 (1992),pp. 5-11
    [32]
    Voinnet, O., Rivas, S., Mestre, P. et al. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus Plant J., 33 (2003),pp. 949-956
    [33]
    Warthmann, N., Chen, H., Ossowski, S. et al. Highly specific gene silencing by artificial miRNAs in rice PLoS ONE, 3 (2008),p. e1829
    [34]
    Werij, J.S., Kloosterman, B., Celis-Gamboa, C. et al. Unravelling enzymatic discoloration in potato through a combined approach of candidate genes, QTL, and expression analysis Theor. Appl. Genet., 115 (2007),pp. 245-252
    [35]
    Yadava, P.
    [36]
    Yan, J., Gu, Y., Jia, X. et al. Plant Cell, 24 (2012),pp. 415-427
    [37]
    Zhang, X., Li, H., Zhang, J. et al. Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner Transgenic Res., 20 (2011),pp. 569-581
    [38]
    Zuo, J., Niu, Q.W., Ikeda, Y. et al. Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes Curr. Opin. Biotechnol., 13 (2002),pp. 173-180
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return