[1] |
2011. Method of the year 2011. Nat. Methods 9, 1.
|
[2] |
2012. The runners-up. Science 338, 1525–1532.
|
[3] |
Baker, M. Gene-editing nucleases Nat. Methods, 9 (2012),pp. 23-26
|
[4] |
Bedell, V.M. Nature (2012)
|
[5] |
Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
|
[6] |
Boch, J., Bonas, U. Annu. Rev. Phytopathol., 48 (2010),pp. 419-436
|
[7] |
Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
|
[8] |
Bogdanove, A.J., Schornack, S., Lahaye, T. TAL effectors: finding plant genes for disease and defense Curr. Opin. Plant. Biol., 13 (2010),pp. 394-401
|
[9] |
Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
|
[10] |
Briggs, A.W., Rios, X., Chari, R. et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers Nucleic Acids Res., 40 (2012),p. e117
|
[11] |
Cade, L., Reyon, D., Hwang, W.Y. et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs Nucleic Acids Res., 40 (2012),pp. 8001-8010
|
[12] |
Capecchi, M.R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century Nat. Rev. Genet., 6 (2005),pp. 507-512
|
[13] |
Carlson, D.F., Tan, W., Lillico, S.G. et al. Efficient TALEN-mediated gene knockout in livestock Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17382-17387
|
[14] |
Carroll, D. Genome engineering with zinc-finger nucleases Genetics, 188 (2011),pp. 773-782
|
[15] |
Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
|
[16] |
Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
|
[17] |
Curtin, S.J., Voytas, D.F., Stupar, R.M. Genome engineering of crops with designer nucleases Plant Genome J., 5 (2012),pp. 42-50
|
[18] |
Curtin, S.J., Zhang, F., Sander, J.D. et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases Plant Physiol., 156 (2011),pp. 466-473
|
[19] |
Dahlem, T.J., Hoshijima, K., Jurynec, M.J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome PLoS Genet., 8 (2012),p. e1002861
|
[20] |
de Pater, S., Neuteboom, L.W., Pinas, J.E. et al. Plant Biotechnol. J., 7 (2009),pp. 821-835
|
[21] |
DeFrancesco, L. Move over ZFNs Nat. Biotechnol., 29 (2011),pp. 681-684
|
[22] |
Deng, D., Yan, C., Pan, X. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors Science, 335 (2012),pp. 720-723
|
[23] |
Deng, D., Yin, P., Yan, C. et al. Recognition of methylated DNA by TAL effectors Cell Res., 22 (2012),pp. 1502-1504
|
[24] |
Doyle, E.L., Booher, N.J., Standage, D.S. et al. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction Nucleic Acids Res., 40 (2012),pp. W117-W122
|
[25] |
Halfter, U., Morris, P.C., Willmitzer, L. Mol. Gen. Genet., 231 (1992),pp. 186-193
|
[26] |
Hockemeyer, D., Wang, H., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
|
[27] |
Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
|
[28] |
Joung, J.K., Sander, J.D. TALENs: a widely applicable technology for targeted genome editing Nat. Rev. Mol. Cell Biol., 14 (2012),pp. 49-55
|
[29] |
Kuzma, J., Kokotovich, A. Renegotiating GM crop regulation EMBO Rep., 12 (2011),pp. 883-888
|
[30] |
Lei, Y. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17484-17489
|
[31] |
Li, L., Piatek, M.J., Atef, A. et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification Plant Mol. Biol., 78 (2012),pp. 407-416
|
[32] |
Li, T., Huang, S., Zhao, X. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes Nucleic Acids Res., 39 (2011),pp. 6315-6325
|
[33] |
Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
|
[34] |
Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
|
[35] |
Ma, S., Zhang, S., Wang, F. et al. Highly efficient and specific genome editing in silkworm using custom TALENs PLoS ONE, 7 (2012),p. e45035
|
[36] |
Mahfouz, M.M., Li, L. TALE nucleases and next generation GM crops GM Crops, 2 (2011),pp. 99-103
|
[37] |
Mahfouz, M.M., Li, L., Shamimuzzaman, M. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 2623-2628
|
[38] |
Mak, A.N., Bradley, P., Cernadas, R.A. et al. The crystal structure of TAL effector PthXo1 bound to its DNA target Science, 335 (2012),pp. 716-719
|
[39] |
Marx, V. Genome-editing tools storm ahead Nat. Methods, 9 (2012),pp. 1055-1059
|
[40] |
Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
|
[41] |
Moore, F.E. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs) PLoS ONE, 7 (2012),p. e37877
|
[42] |
Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
|
[43] |
Mussolino, C., Cathomen, T. TALE nucleases: tailored genome engineering made easy Curr. Opin. Biotechnol., 23 (2012),pp. 644-650
|
[44] |
Osakabe, K., Osakabe, Y., Toki, S. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 12034-12039
|
[45] |
Paszkowski, J., Baur, M., Bogucki, A. et al. Gene targeting in plants EMBO J., 7 (1988),pp. 4021-4026
|
[46] |
Pennisi, E. Sowing the seeds for the ideal crop Science, 327 (2010),pp. 802-803
|
[47] |
Pennisi, E. The tale of the TALEs Science, 338 (2012),pp. 1408-1411
|
[48] |
Remy, S., Tesson, L., Menoret, S. et al. Zinc-finger nucleases: a powerful tool for genetic engineering of animals Transgenic Res., 19 (2010),pp. 363-371
|
[49] |
Reyon, D., Khayter, C., Regan, M.R., Joung, J.K., Sander, J.D., 2012a. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly. Curr. Protoc. Mol. Biol. Chapter 12, Unit 12 15. http://dx.doi.org/10.1002/0471142727.mb1215s100.
|
[50] |
Reyon, D., Tsai, S.Q., Khayter, C. et al. FLASH assembly of TALENs for high-throughput genome editing Nat. Biotechnol., 30 (2012),pp. 460-465
|
[51] |
Rouet, P., Smih, F., Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 6064-6068
|
[52] |
Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
|
[53] |
Scherer, S., Davis, R.W. Proc. Natl. Acad. Sci. USA, 76 (1979),pp. 4951-4955
|
[54] |
Schmid-Burgk, J.L., Schmidt, T., Kaiser, V. et al. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes Nat. Biotechnol., 31 (2012),pp. 76-81
|
[55] |
Shan, Q., Wang, Y., Chen, K. et al. Mol. Plant (2013)
|
[56] |
Shukla, V.K., Doyon, Y., Miller, J.C. et al. Nature, 459 (2009),pp. 437-441
|
[57] |
Streubel, J., Blucher, C., Landgraf, A. et al. TAL effector RVD specificities and efficiencies Nat. Biotechnol., 30 (2012),pp. 593-595
|
[58] |
Tesson, L. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
|
[59] |
Tong, C., Huang, G., Ashton, C. et al. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs J. Genet. Genomics, 39 (2012),pp. 275-280
|
[60] |
Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases Nature, 459 (2009),pp. 442-445
|
[61] |
Tzfira, T., Weinthal, D., Marton, I. et al. Genome modifications in plant cells by custom-made restriction enzymes Plant Biotechnol. J., 10 (2012),pp. 373-389
|
[62] |
Urnov, F.D., Miller, J.C., Lee, Y.L. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases Nature, 435 (2005),pp. 646-651
|
[63] |
Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
|
[64] |
Valton, J., Dupuy, A., Daboussi, F. et al. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation J. Biol. Chem., 287 (2012),pp. 38427-38432
|
[65] |
Wang, Z. An integrated Chip for the high-throughput synthesis of transcription activator-like effectors Angew. Chem. Int. Ed. Engl., 51 (2012),pp. 8505-8508
|
[66] |
Weber, E., Gruetzner, R., Werner, S. et al. Assembly of designer TAL effectors by Golden Gate cloning PLoS ONE, 6 (2011),p. e19722
|
[67] |
Wood, A.J. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
|
[68] |
Wright, D.A., Townsend, J.A., , Irwin, P.A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases Plant J., 44 (2005),pp. 693-705
|
[69] |
Xiao, A., Wu, Y., Yang, Z. et al. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering Nucleic Acids Res., 41 (2013),pp. D415-D422
|
[70] |
Zhang, F., Cong, L., Lodato, S. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription Nat. Biotechnol., 29 (2011),pp. 149-153
|
[71] |
Zhang, F., Maeder, M.L., Unger-Wallace, E. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 12028-12033
|
[72] |
Zhang, Y., Zhang, F., Li, X. et al. Transcription activator-like effector nucleases enable efficient plant genome engineering Plant Physiol., 161 (2013),pp. 20-27
|