[1] |
Abel, S., Theologis, A. Plant J., 5 (1994),pp. 421-427
|
[2] |
Almoguera, C., Rojas, A., Diaz-Martin, J. et al. Seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower J. Biol. Chem., 277 (2002),pp. 43866-43872
|
[3] |
Bailey, T.L., Gribskov, M. Bioinformatics, 14 (1998),pp. 48-54
|
[4] |
Bharti, K., Schmidt, E., Lyck, R. et al. Plant J., 22 (2000),pp. 355-365
|
[5] |
Bienz, M., Pelham, H.R.B. Mechanisms of heat-shock gene activation in higher eukaryotes Adv. Genet., 24 (1987),pp. 31-72
|
[6] |
Charng, Y.Y., Liu, H.C., Liu, N.Y. et al. Plant Physiol., 143 (2007),pp. 251-262
|
[7] |
Chung, E., Seong, E., Kim, Y.-C. et al. Mol. Cells, 17 (2004),pp. 377-380
|
[8] |
Chung, E., Cho, C.W., Yun, B.H. et al. Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature stress Gene, 443 (2009),pp. 91-99
|
[9] |
Czarnecka-Verner, E., Yuan, C.-X., Fox, P.C. et al. Isolation and characterization of six heat shock transcription factor cDNA clones from soybean Plant Mol. Biol., 29 (1995),pp. 37-51
|
[10] |
Davletova, S., Rizhsky, L., Liang, H. et al. Plant Cell, 17 (2005),pp. 268-281
|
[11] |
Delorenzi, M., Speed, T. An HMM model for coiled-coil domains and a comparison with PSSM-based predictions Bioinformatics, 18 (2002),pp. 617-625
|
[12] |
Díaz-Martín, J., Almoguera, C., Prieto-Dapena, P. et al. Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter Plant Physiol., 139 (2005),pp. 1483-1494
|
[13] |
Doring, P., Treuter, E., Kistner, C. et al. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2 Plant Cell, 12 (2000),pp. 265-278
|
[14] |
Fields, K.A., Fischer, E., Haakstadt, T. Infect. Immun., 70 (2002),pp. 3816-3823
|
[15] |
Gorlich, D., Kutay, U. Transport between the cell nucleus and the cytoplasm Annu. Rev. Cell. Dev. Biol., 15 (1999),pp. 607-660
|
[16] |
Guo, J., Wu, J., Qian, J. et al. J. Genet. Genomics, 35 (2008),pp. 105-118
|
[17] |
Heerklotz, D., Doring, P., Bonzelius, F. et al. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2 Mol. Cell. Biol., 21 (2001),pp. 1759-1768
|
[18] |
Higgins, D.G., Thompson, J.D., Gibson, T.J. Using CLUSTAL for multiple sequence alignments Methods Enzymol., 266 (1996),pp. 383-402
|
[19] |
Kotak, S., Port, M., Ganguli, A. et al. Plant J., 39 (2004),pp. 98-112
|
[20] |
Kotak, S., Larkindale, J., Lee, U. et al. Complexity of the heat stress response in plants Curr. Opin. Plant Biol., 10 (2007),pp. 310-316
|
[21] |
Kotak, S., Vierling, E., Bäumlein, H. et al. Plant Cell, 19 (2007),pp. 182-195
|
[22] |
la Cour, T., Kiemer, L., Molgaard, A. et al. Analysis and prediction of leucine-rich nuclear export signals Protein Eng. Des. Sel., 17 (2004),pp. 527-536
|
[23] |
Larkindale, J., Knight, M.R. Plant Physiol., 128 (2002),pp. 682-695
|
[24] |
Larkindale, J., Hall, J.D., Knight, M.R. et al. Plant Physiol., 138 (2005),pp. 882-897
|
[25] |
Letunic, I., Copley, R.R., Schmidt, S. et al. SMART 4.0: towards genomic data integration Nucleic Acids Res., 32 (2004),pp. D142-D144
|
[26] |
Lyck, R., Harmening, U., Höhfeld, I. et al. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors Planta, 202 (1997),pp. 117-125
|
[27] |
Lin, Y.-X., Jiang, H.-Y., Chu, Z.-X. et al. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize BMC Genomics, 12 (2011),p. 76
|
[28] |
McGinnis, S., Madden, T.L. BLAST: at the core of a powerful and diverse set of sequence analysis tools Nucleic Acids Res., 32 (2004),pp. W20-W25
|
[29] |
Miller, G., Mittler, R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Bot., 98 (2006),pp. 279-288
|
[30] |
Mishra, S.K., Tripp, J., Winkelhaus, S. et al. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato Genes Dev., 16 (2002),pp. 1555-1567
|
[31] |
Mochida, K., Yoshida, T., Sakurai, T. et al. DNA Res., 16 (2009),pp. 353-369
|
[32] |
Nishizawa, A., Ybuta, Y., Yoshida, E. et al. Plant J., 48 (2006),pp. 535-547
|
[33] |
Nover, L. Expression of heat stress genes I homologous and heterologous systems Enzyme Microb. Technol., 9 (1987),pp. 130-144
|
[34] |
Nover, L., Bharti, K., Döring, P. et al. Cell Stress Chaperon, 6 (2001),pp. 177-189
|
[35] |
Panchuk, I.I., Volkov, R.A., Schöffl, F. Plant Physiol., 129 (2002),pp. 838-853
|
[36] |
Panikulangara, T.J., Eggers-Schumacher, G., Wunderlich, M. et al. Plant Physiol., 136 (2004),pp. 3148-3158
|
[37] |
Peteranderi, R., Rabenstein, M., Shin, Y.K. et al. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor Biochemistry, 38 (1999),pp. 3559-3569
|
[38] |
Port, M., Tripp, J., Zielinski, D. et al. Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2 Plant Physiol., 135 (2004),pp. 1457-1470
|
[39] |
Qin, F., Kakimoto, M., Sakuma, Y. et al. Plant J., 50 (2007),pp. 54-59
|
[40] |
Rizhsky, L., Liang, H., Shuman, J. et al. Plant Physiol., 134 (2004),pp. 1683-1696
|
[41] |
Sakuma, Y., Maruyama, K., Qin, F. et al. Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 18822-18827
|
[42] |
Scharf, K.D., Rose, S., Zott, W. et al. EMBO J., 9 (1990),pp. 4495-4501
|
[43] |
Scharf, K.D., Heider, H., Hohfeld, I. et al. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat shock granules Mol. Cell. Biol., 18 (1998),pp. 2240-2251
|
[44] |
Schmutz, J., Cannon, S.B., Schlueter, J. et al. Genome sequence of the palaeopolyploid soybean Nature, 463 (2010),pp. 178-183
|
[45] |
Schramm, F., Larkindale, J., Kiehlmann, E. et al. Plant J., 53 (2008),pp. 264-274
|
[46] |
Schultheiss, J., Kunert, O., Gase, U. et al. Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor Hsf24 Eur. J. Biochem., 236 (1996),pp. 911-921
|
[47] |
Shim, D., Hwang, J.-U., Lee, J. et al. Orthologs of class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice Plant J., 21 (2009),pp. 4031-4034
|
[48] |
Shultz, J.L., Kurunam, D., Shopinski, K. et al. The Soybean Genome Database (SoyGD): a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max Nucleic Acids Res., 34 (2006),pp. D758-D765
|
[49] |
Swindell, W.R., Huebner, M., Weber, A.P. BMC Genomics, 8 (2007),p. 25
|
[50] |
Volkov, R.A., Panchuk, I.I., Mullineaux, P.M. et al. Plant Mol. Biol., 61 (2006),pp. 733-746
|
[51] |
von Koskull-Döring, P., Scharf, K.-D., Nover, L. The diversity of plant heat stress transcription factors Trends Plant Sci., 12 (2007),pp. 452-457
|
[52] |
Wang, Z., Libault, M., Joshi, T. et al. Soy DB: a knowledge database of soybean transcription factors BMC Plant Biol., 10 (2010),p. 14
|
[53] |
Yamanouchi, U., Yano, M., Lin, H. et al. Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 7530-7535
|
[54] |
Yokotani, N., Ichikawa, T., Kondou, Y. et al. Planta, 227 (2008),pp. 957-967
|
[55] |
Yoshida, T., Sakuma, Y., Todaka, D. et al. Biochem. Biophys. Res. Commun., 368 (2008),pp. 515-521
|
[56] |
Zhu, B., Ye, C., Lü, H. et al. J. Plant Res., 119 (2006),pp. 247-256
|