[1] |
Bartel, D.P. MicroRNAs genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
|
[2] |
Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
|
[3] |
Berezikov, E., Guryev, V., van de Belt, J. et al. Phylogenetic shadowing and computational identification of human microRNA genes Cell, 120 (2005),pp. 21-24
|
[4] |
Clark, A.G., Civetta, A. Evolutionary biology: protamine wars Nature, 403 (2000),pp. 261-263
|
[5] |
Friedman, R.C., Farh, K.K.-H., Burge, C.B. et al. Most mammalian mRNAs are conserved targets of microRNAs Genome Res., 19 (2009),pp. 92-105
|
[6] |
Grimson, A., Farh, K.K.H., Johnston, W.K. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing Mol. Cell, 27 (2007),pp. 91-105
|
[7] |
Jedrzejczak, P., Kempisty, B., Bryja, A. et al. Quantitative assessment of transition proteins 1, 2 spermatid-specific linker histone H1-like protein transcripts in spermatozoa from normozoospermic and asthenozoospermic men Arch. Androl., 53 (2007),pp. 199-205
|
[8] |
Lewis, B.P., Burge, C.B., Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets Cell, 120 (2005),pp. 15-20
|
[9] |
Lewis, B.P., Shih, I., Jones-Rhoades, M.W. et al. Prediction of mammalian MicroRNA targets Cell, 115 (2003),pp. 787-798
|
[10] |
Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F. et al. CDD: a conserved domain database for protein classification Nucleic Acids Res., 33 (2005),pp. D192-D196
|
[11] |
Nielsen, R., Yang, Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene Genetics, 148 (1998),pp. 929-936
|
[12] |
Palumbi, S.R. All males are not created equal: fertility differences depend on gamete recognition polymorphisms in sea urchins Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 12632-12637
|
[13] |
Rooney, A.P., Zhang, J. Rapid evolution of a primate sperm protein: relaxation of functional constraint or positive Darwinian selection? Mol. Biol. Evol., 16 (1999),pp. 706-710
|
[14] |
Rooney, A.P., Zhang, J., Nei, M. An unusual form of purifying selection in a sperm protein Mol. Biol. Evol., 17 (2000),pp. 278-283
|
[15] |
Saif Dehwah, M.A., Xu, A., Huang, Q. MicroRNAs and type 2 diabetes/obesity J. Genet. Genomics, 39 (2012),pp. 11-18
|
[16] |
Swanson, W.J., Vacquier, V.D. The rapid evolution of reproductive proteins Nat. Rev. Genet., 3 (2002),pp. 137-144
|
[17] |
Swanson, W.J., Yang, Z., Wolfner, M.F. et al. Positive Darwinian selection in the evolution of mammalian female reproductive proteins Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 2509-2514
|
[18] |
Turner, L.M., Chuong, E.B., Hoekstra, H.E. Comparative analysis of testis protein evolution in rodents Genetics, 179 (2008),pp. 2075-2089
|
[19] |
Vacquier, V.D. Evolution of gamete recognition proteins Science, 281 (1998),pp. 1995-1998
|
[20] |
Wyckoff, G.J., Wang, W., Wu, C.I. Rapid evolution of male reproductive genes in the descent of man Nature, 403 (2000),pp. 304-309
|
[21] |
Yan, W., Ma, L., Burns, K.H. et al. HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 10546-10551
|
[22] |
Yang, Z. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A J. Mol. Evol., 51 (2000),pp. 423-432
|
[23] |
Zhang, J., Nielsen, R., Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level Mol. Biol. Evol., 22 (2005),pp. 2472-2479
|
[24] |
Zhang, R., Peng, Y., Wang, W. et al. Rapid evolution of an X-linked microRNA cluster in primates Genome Res., 17 (2007),p. 612
|