5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 11
Nov.  2012
Turn off MathJax
Article Contents

Transcription-Coupled Replacement of Histones: Degradation or Recycling?

doi: 10.1016/j.jgg.2012.09.001
More Information
  • Corresponding author: E-mail address: xqiu@bnu.edu.cn (Xiao-Bo Qiu)
  • Received Date: 2012-08-18
  • Accepted Date: 2012-09-13
  • Rev Recd Date: 2012-09-09
  • Available Online: 2012-09-25
  • Publish Date: 2012-11-20
  • Histone modifications are proposed to constitute a “histone code” for epigenetic regulation of gene expression. However, recent studies demonstrate that histones have to be disassembled from chromatin during transcription. Recent evidence, though not conclusive, suggests that histones might be degradable after being removed from chromatin during transcription. Degradation of overexpressed excessive histones, instead of native histones, has been shown to be dependent on proteasomes and ubiquitination. Since the 26S proteasome usually recognizes polyubiquitinated substrates, it is critical to demonstrate whether degradation of histones is mediated by polyubiquitination. Unexpectedly, there is almost no evidence that any ubiquitin ligase can promote polyubiquitination-dependent degradation of constitutive histones. Meanwhile, acetylation and phosphorylation are also associated with histone degradation. This review attempts to summarize the current knowledge on the transcription-coupled degradation of histones and its regulation by posttranslational protein modifications.
  • loading
  • [1]
    Belotserkovskaya, R., Reinberg, D. Facts about FACT and transcript elongation through chromatin Curr. Opin. Genet. Dev., 14 (2004),pp. 139-146
    [2]
    Bernstein, B.E., Liu, C.L., Humphrey, E.L. et al. Global nucleosome occupancy in yeast Genome Biol., 5 (2004),p. R62
    [3]
    Boeger, H., Griesenbeck, J., Strattan, J.S. et al. Nucleosomes unfold completely at a transcriptionally active promoter Mol. Cell, 11 (2003),pp. 1587-1598
    [4]
    Bonner, W., Wu, R.S., Panusz, H. et al. Kinetics of accumulation and depletion of soluble newly synthesized histone in the reciprocal regulation of histone and DNA synthesis Biochemistry, 27 (1988),pp. 6542-6550
    [5]
    Butler, W.B., Mueller, G.C. Control of histone synthesis in HeLa cells Biochim. Biophys. Acta, 294 (1973),pp. 481-496
    [6]
    Campos, E.I., Reinberg, D. Histones: annotating chromatin Annu. Rev. Genet., 43 (2009),pp. 559-599
    [7]
    Catalgol, B., Wendt, B., Grimm, S. et al. Chromatin repair after oxidative stress: role of PARP-mediated proteasome activation Free Radic. Bio. Med., 48 (2010),pp. 673-680
    [8]
    Cook, A.J.L., Gurard-Levin, Z.A., Vassias, I. et al. A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain Mol. Cell, 44 (2011),pp. 918-927
    [9]
    de Napoles, M., Mermoud, J.E., Wakao, R. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation Dev. Cell, 7 (2004),pp. 663-676
    [10]
    Deal, R.B., Henikoff, J.G., Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones Science, 328 (2010),pp. 1161-1164
    [11]
    Destree, O., D'Adelhart-Toorop, H., Charles, R. Cytoplasmic origin of the so-called nuclear neutral histone protease Biochim. Biophys. Acta, 378 (1975),pp. 450-458
    [12]
    Dion, M.F., Kaplan, T., Kim, M. et al. Dynamics of replication-independent histone turnover in budding yeast Science, 315 (2007),pp. 1405-1408
    [13]
    Faulkner, R., Bhatnagar, Y. A protease activity is associated with testicular chromatin of the mouse Biol. Reprod., 36 (1987),pp. 471-480
    [14]
    Felsenfeld, G., Groudine, M. Controlling the double helix Nature, 421 (2003),pp. 448-453
    [15]
    Garrels, J.I., Elgin, S.C.R., Bonner, J. A histone protease of rat liver chromatin Biochem. Biophys. Res. Commun., 46 (1972),pp. 545-551
    [16]
    Geng, F., Tansey, W.P. Polyubiquitylation of histone H2B Mol. Biol. Cell, 19 (2008),pp. 3616-3624
    [17]
    Giannattasio, M., Lazzaro, F., Plevani, P. et al. The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6–Bre1 and H3 methylation by Dot1 J. Biol. Chem., 280 (2005),pp. 9879-9886
    [18]
    Glickman, M.H., Ciechanover, A. The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction Physiol. Rev., 82 (2002),pp. 373-428
    [19]
    Goldberg, A.L. Nobel committee tags ubiquitin for distinction Neuron, 45 (2005),pp. 339-344
    [20]
    Grøvdal, L.M., Stang, E., Sorkin, A. et al. Direct interaction of Cbl with pTyr 1045 of the EGF receptor (EGFR) is required to sort the EGFR to lysosomes for degradation Exp. Cell Res., 300 (2004),pp. 388-395
    [21]
    Hammoud, S.S., Nix, D.A., Zhang, H. et al. Distinctive chromatin in human sperm packages genes for embryo development Nature, 460 (2009),pp. 473-478
    [22]
    Hancock, R. J. Mol. Biol., 40 (1969),pp. 457-466
    [23]
    Huen, M.S.Y., Grant, R., Manke, I. et al. Cell, 131 (2007),pp. 901-914
    [24]
    Jariel-Encontre, I., Bossis, G., Piechaczyk, M. Ubiquitin-independent degradation of proteins by the proteasome BBA-Rev. Cancer, 1786 (2008),pp. 153-177
    [25]
    Jenuwein, T., Allis, C.D. Translating the histone code Science, 293 (2001),pp. 1074-1080
    [26]
    Kimura, H., Cook, P.R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B J. Cell Biol., 153 (2001),pp. 1341-1353
    [27]
    Kireeva, M.L., Walter, W., Tchernajenko, V. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription Mol. Cell, 9 (2002),pp. 541-552
    [28]
    Kornberg, R.D., Lorch, Y. Twenty-five years of the nucleosome, review fundamental particle of the eukaryote chromosome Cell, 98 (1999),pp. 285-294
    [29]
    Lee, C.K., Shibata, Y., Rao, B. et al. Evidence for nucleosome depletion at active regulatory regions genome-wide Nat. Genet., 36 (2004),pp. 900-905
    [30]
    Liu, Z., Oughtred, R., Wing, S.S. Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones Mol. Cell. Biol., 25 (2005),pp. 2819-2831
    [31]
    Liu, Z., Miao, D., Xia, Q. et al. Regulated expression of the ubiquitin protein ligase, E3(Histone)/LASU1/Mule/ARF-BP1/HUWE1, during spermatogenesis Dev. Dyn., 236 (2007),pp. 2889-2898
    [32]
    Lu, L.Y., Wu, J., Ye, L. et al. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis Dev. Cell, 18 (2010),pp. 371-384
    [33]
    Luger, K., Mader, A.W., Richmond, R.K. et al. Nature, 389 (1997),pp. 251-260
    [34]
    Luijsterburg, M.S., Acs, K., Ackermann, L. et al. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure EMBO J., 31 (2012),pp. 2511-2527
    [35]
    Mailand, N., Bekker-Jensen, S., Faustrup, H. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins Cell, 131 (2007),pp. 887-900
    [36]
    Mito, Y., Henikoff, J.G., Henikoff, S. Genome-scale profiling of histone H3. 3 replacement patterns Nat. Genet., 37 (2005),pp. 1090-1097
    [37]
    Mito, Y., Henikoff, J.G., Henikoff, S. Science, 315 (2007),pp. 1408-1411
    [38]
    Qiu, X.B., Ouyang, S.Y., Li, C.J. et al. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37 EMBO J., 25 (2006),pp. 5742-5753
    [39]
    Reinke, H., Hörz, W. Mol. Cell (2003),pp. 1599-1607
    [40]
    Seale, R.L. Conservation of non-histone chromatin proteins during growth in HeLa cells Biochem. Biophys. Res. Commun., 63 (1975),pp. 140-148
    [41]
    Singh, R.K., Kabbaj, M.H.M., Paik, J. et al. Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis Nat. Cell Biol., 11 (2009),pp. 925-933
    [42]
    Singh, R.K., Gonzalez, M., Kabbaj, M.H.M. et al. PLoS ONE, 7 (2012),p. e36295
    [43]
    Steger, D.J., Workman, J.L. Transcriptional analysis of purified histone acetyltransferase complexes Methods, 19 (1999),pp. 410-416
    [44]
    Stein, G.S., Stein, J.L., Lian, J.B. et al. Modifications in molecular mechanisms associated with control of cell cycle regulated human histone gene expression during differentiation Cell Biophys., 15 (1989),pp. 201-223
    [45]
    Tsukuda, T., Fleming, A.B., Nickoloff, J.A. et al. Nature, 438 (2005),pp. 379-383
    [46]
    Ullrich, O., Reinheckel, T., Sitte, N. et al. Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 6223-6628
    [47]
    Williams, S.K., Truong, D., Tyler, J.K. Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 9000-9005
    [48]
    Zee, B.M., Levin, R.S., DiMaggio, P.A. et al. Global turnover of histone post-translational modifications and variants in human cells Epigenet. Chromatin, 3 (2010),pp. 1-11
    [49]
    Zhang, J., Kan, S., Huang, B. et al. Mule determines the apoptotic response to HDAC inhibitors by targeted ubiquitination and destruction of HDAC2 Genes Dev., 25 (2011),pp. 2610-2618
    [50]
    Zhang, Y. Transcriptional regulation by histone ubiquitination and deubiquitination Genes Dev., 17 (2003),pp. 2733-2740
    [51]
    Zhao, J., Herrera-Diaz, J., Gross, D.S. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density Mol. Cell. Biol., 25 (2005),pp. 8985-8999
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return