[1] |
Araujo, P.R., Yoon, K., Ko, D. et al. Before it gets started: regulating translation at the 5′ UTR Comp. Funct. Genomics, 2012 (2012),p. 475731
|
[2] |
Avila, J. The tau code Front Aging Neurosci., 1 (2009),p. 1
|
[3] |
Babendure, J.R., Babendure, J.L., Ding, J.H. et al. Control of mammalian translation by mRNA structure near caps RNA, 12 (2006),pp. 851-861
|
[4] |
Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors Curr. Opin. Cell Biol., 17 (2005),pp. 251-256
|
[5] |
Berget, S.M., Moore, C., Sharp, P.A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA Proc. Natl. Acad. Sci. USA, 74 (1977),pp. 3171-3175
|
[6] |
Binder, R., Horowitz, J.A., Basilion, J.P. et al. Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3′ UTR and does not involve poly(A) tail shortening EMBO J., 13 (1994),pp. 1969-1980
|
[7] |
Bittencourt, D., Auboeuf, D. Analysis of co-transcriptional RNA processing by RNA-ChIP assay Methods Mol. Biol., 809 (2012),pp. 563-577
|
[8] |
Black, D.L. Mechanisms of alternative pre-messenger RNA splicing Annu. Rev. Biochem., 72 (2003),pp. 291-336
|
[9] |
Cheah, M.T., Wachter, A., Sudarsan, N. et al. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches Nature, 447 (2007),pp. 497-500
|
[10] |
Chen, Y., Carlini, D.B., Baines, J.F. et al. RNA secondary structure and compensatory evolution Genes Genet. Syst., 74 (1999),pp. 271-286
|
[11] |
Chow, L.T., Gelinas, R.E., Broker, T.R. et al. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA Cell, 12 (1977),pp. 1-8
|
[12] |
Ding, Y., Lawrence, C.E. Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond Nucleic Acids Res., 29 (2001),pp. 1034-1046
|
[13] |
Donahue, C.P., Muratore, C., Wu, J.Y. et al. Stabilization of the tau exon 10 stem loop alters pre-mRNA splicing J. Biol. Chem., 281 (2006),pp. 23302-23306
|
[14] |
Estes, P.A., Cooke, N.E., Liebhaber, S.A. A native RNA secondary structure controls alternative splice-site selection and generates two human growth hormone isoforms J. Biol. Chem., 267 (1992),pp. 14902-14908
|
[15] |
Ezkurdia, I., Del Pozo, A., Frankish, A. et al. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function Mol. Biol. Evol., 29 (2012),pp. 2265-2283
|
[16] |
Floris, M., Raimondo, D., Leoni, G. et al. MAISTAS: a tool for automatic structural evaluation of alternative splicing products Bioinformatics, 27 (2011),pp. 1625-1629
|
[17] |
Gagna, C.E., Lambert, W.C. Med. Hypotheses, 67 (2006),pp. 1099-1114
|
[18] |
Gagna, C.E., Lambert, W.C. Novel multistranded, alternative, plasmid and helical transitional DNA and RNA microarrays: implications for therapeutics Pharmacogenomics, 10 (2009),pp. 895-914
|
[19] |
Gingold, H., Pilpel, Y. Determinants of translation efficiency and accuracy Mol. Syst. Biol., 7 (2011),p. 481
|
[20] |
Gu, W., Zhou, T., Wilke, C.O. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes PLoS Comput. Biol., 6 (2010),p. e1000664
|
[21] |
Hallegger, M., Llorian, M., Smith, C.W. Alternative splicing: global insights FEBS J., 277 (2010),pp. 856-866
|
[22] |
Hegyi, H., Kalmar, L., Horvath, T. et al. Verification of alternative splicing variants based on domain integrity, truncation length and intrinsic protein disorder Nucleic Acids Res., 39 (2011),pp. 1208-1219
|
[23] |
Huynen, M.A., Konings, D.A., Hogeweg, P. Multiple coding and the evolutionary properties of RNA secondary structure J. Theor. Biol., 165 (1993),pp. 251-267
|
[24] |
Jenkins, R.H., Bennagi, R., Martin, J. et al. A conserved stem loop motif in the 5′untranslated region regulates transforming growth factor-β1 translation PLoS ONE, 5 (2010),p. e12283
|
[25] |
Jin, Y., Yang, Y., Zhang, P. New insight into RNA secondary structure on alternative splicing of pre-mRNA RNA Biology, 8 (2011),pp. 450-457
|
[26] |
Kar, A., Fushimi, K., Zhou, X. et al. RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5′ splice site Mol. Cell. Biol., 31 (2011),pp. 1812-1821
|
[27] |
Kertesz, M., Wan, Y., Mazor, E. et al. Genome-wide measurement of RNA secondary structure in yeast Nature, 467 (2010),pp. 103-107
|
[28] |
Kim, S.J., Park, K., Koeller, D. et al. Post-transcriptional regulation of the human transforming growth factor-β1 gene J. Biol. Chem., 267 (1992),pp. 13702-13707
|
[29] |
Kochetov, A.V., Palyanov, A., Titov, I.I. et al. AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site BMC Bioinformatics, 8 (2007),p. 318
|
[30] |
Kozak, M. Leader length and secondary structure modulate mRNA function under conditions of stress Mol. Cell. Biol., 8 (1988),pp. 2737-2744
|
[31] |
Kozak, M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs Mol. Cell. Biol., 9 (1989),pp. 5134-5142
|
[32] |
Kozak, M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems Mol. Cell. Biol., 9 (1989),pp. 5073-5080
|
[33] |
Kozak, M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 8301-8305
|
[34] |
Kozak, M. Gene, 361 (2005),pp. 13-37
|
[35] |
Li, X., Quon, G., Lipshitz, H.D. et al. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure RNA, 16 (2010),pp. 1096-1107
|
[36] |
Lucks, J.B., Mortimer, S.A., Trapnell, C. et al. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 11063-11068
|
[37] |
Mattick, J.S., Makunin, I.V. Non-coding RNA Hum. Mol. Genet., 15 Spec (2006),pp. R17-R29
|
[38] |
McManus, C.J., Graveley, B.R. RNA structure and the mechanisms of alternative splicing Curr. Opin. Genet. Dev., 21 (2011),pp. 373-379
|
[39] |
Melamud, E., Moult, J. Stochastic noise in splicing machinery Nucleic Acids Res., 37 (2009),pp. 4873-4886
|
[40] |
Melamud, E., Moult, J. Structural implication of splicing stochastics Nucleic Acids Res., 37 (2009),pp. 4862-4872
|
[41] |
Merino, E.J., Wilkinson, K.A., Coughlan, J.L. et al. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE) J. Am. Chem. Soc., 127 (2005),pp. 4223-4231
|
[42] |
Mignone, F., Gissi, C., Liuni, S. et al. Untranslated regions of mRNAs Genome Biol., 3 (2002)
|
[43] |
Modrek, B., Lee, C.J. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss Nat. Genet., 34 (2003),pp. 177-180
|
[44] |
Novikova, I.V., Hennelly, S.P., Sanbonmatsu, K.Y. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator Nucleic Acids Res., 40 (2012),pp. 5034-5051
|
[45] |
Oikawa, D., Tokuda, M., Hosoda, A. et al. Identification of a consensus element recognized and cleaved by IRE1 α Nucleic Acids Res., 38 (2010),pp. 6265-6273
|
[46] |
Pan, Q., Shai, O., Lee, L.J. et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing Nat. Genet., 40 (2008),pp. 1413-1415
|
[47] |
Pan, Q., Shai, O., Misquitta, C. et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform Mol. Cell, 16 (2004),pp. 929-941
|
[48] |
Pesole, G., Grillo, G., Larizza, A. et al. The untranslated regions of eukaryotic mRNAs: structure, function, evolution and bioinformatic tools for their analysis Brief Bioinformatics, 1 (2000),pp. 236-249
|
[49] |
Poliseno, L., Salmena, L., Zhang, J. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology Nature, 465 (2010),pp. 1033-1038
|
[50] |
Rabl, J., Leibundgut, M., Ataide, S.F. et al. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1 Science, 331 (2011),pp. 730-736
|
[51] |
Romeo, D.S., Park, K., Roberts, A.B. et al. An element of the transforming growth factor-beta 1 5′-untranslated region represses translation and specifically binds a cytosolic factor Mol. Endocrinol., 7 (1993),pp. 759-766
|
[52] |
Shepard, S., McCreary, M., Fedorov, A. The peculiarities of large intron splicing in animals PLoS ONE, 4 (2009),p. e7853
|
[53] |
Singh, N.N., Androphy, E.J., Singh, R.N. An extended inhibitory context causes skipping of exon 7 of SMN2 in spinal muscular atrophy Biochem. Biophys. Res. Commun., 315 (2004),pp. 381-388
|
[54] |
Singh, N.N., Singh, R.N., Androphy, E.J. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes Nucleic Acids Res., 35 (2007),pp. 371-389
|
[55] |
Sirand-Pugnet, P., Durosay, P., Clouet d'Orval, B.C. et al. β-Tropomyosin pre-mRNA folding around a muscle-specific exon interferes with several steps of spliceosome assembly J. Mol. Biol., 251 (1995),pp. 591-602
|
[56] |
Svitkin, Y.V., Pause, A., Haghighat, A. et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure RNA, 7 (2001),pp. 382-394
|
[57] |
Tsao, D., Shabalina, S.A., Gauthier, J. et al. Disruptive mRNA folding increases translational efficiency of catechol-O-methyltransferase variant Nucleic Acids Res., 39 (2011),pp. 6201-6212
|
[58] |
Underwood, J.G., Uzilov, A.V., Katzman, S. et al. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing Nat. Methods, 7 (2010),pp. 995-1001
|
[59] |
Varani, L., Hasegawa, M., Spillantini, M.G. et al. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17 Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 8229-8234
|
[60] |
Vogel, C., Abreu Rde, S., Ko, D. et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line Mol. Syst. Biol., 6 (2010),p. 400
|
[61] |
Wan, Y., Kertesz, M., Spitale, R.C. et al. Understanding the transcriptome through RNA structure Nat. Rev. Genet., 12 (2011),pp. 641-655
|
[62] |
Wang, Z., Burge, C.B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code RNA, 14 (2008),pp. 802-813
|
[63] |
Warf, M.B., Berglund, J.A. Role of RNA structure in regulating pre-mRNA splicing Trends Biochem. Sci., 35 (2010),pp. 169-178
|
[64] |
Washietl, S. Sequence and structure analysis of noncoding RNAs Methods Mol. Biol., 609 (2010),pp. 285-306
|
[65] |
Weeks, K.M., Mauger, D.M. Exploring RNA structural codes with SHAPE chemistry Acc. Chem. Res., 44 (2011),pp. 1280-1291
|
[66] |
Wen, J.D., Lancaster, L., Hodges, C. et al. Following translation by single ribosomes one codon at a time Nature, 452 (2008),pp. 598-603
|
[67] |
Wu, J., Yuan, H., Tan, S. et al. Increased complexity of gene structure and base composition in vertebrates J. Genet. Genomics, 38 (2011),pp. 297-305
|
[68] |
Yang, Y., Zhan, L., Zhang, W. et al. RNA secondary structure in mutually exclusive splicing Nat. Struct. Mol. Biol., 18 (2011),pp. 159-168
|
[69] |
Zhang, J., Kuo, C.C., Chen, L. GC content around splice sites affects splicing through pre-mRNA secondary structures BMC Genomics, 12 (2011),p. 90
|
[70] |
Zheng, S., Chen, Y., Donahue, C.P. et al. Structural basis for stabilization of the tau pre-mRNA splicing regulatory element by novantrone (mitoxantrone) Chem. Biol., 16 (2009),pp. 557-566
|