[1] |
Becker, C.G., Lieberoth, B.C., Morellini, F. et al. L1.1 is involved in spinal cord regeneration in adult zebrafish J. Neurosci., 24 (2004),pp. 7837-7842
|
[2] |
Becker, T., Becker, C.G. Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish J. Comp. Neurol., 433 (2001),pp. 131-147
|
[3] |
Becker, T., Bernhardt, R.R., Reinhard, E. et al. Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules J. Neurosci., 18 (1998),pp. 5789-5803
|
[4] |
Becker, T., Wullimann, M.F., Becker, C.G. et al. Axonal regrowth after spinal cord transection in adult zebrafish J. Comp. Neurol., 377 (1997),pp. 577-595
|
[5] |
Fawcett, J.W. Overcoming inhibition in the damaged spinal cord J. Neurotrauma., 23 (2006),pp. 371-383
|
[6] |
Guo, Y., Ma, L., Cristofanilli, M. et al. Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish Neuroscience, 172 (2011),pp. 329-341
|
[7] |
Hui, S.P., Dutta, A., Ghosh, S. Cellular response after crush injury in adult zebrafish spinal cord Dev. Dyn., 239 (2010),pp. 2962-2979
|
[8] |
Kroehne, V., Freudenreich, D., Hans, S. et al. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors Development, 138 (2011),pp. 4831-4841
|
[9] |
Mehanna, A., Jakovcevski, I., Acar, A. et al. Polysialic acid glycomimetic promotes functional recovery and plasticity after spinal cord injury in mice Mol. Ther., 18 (2010),pp. 34-43
|
[10] |
Nout, Y.S., Ferguson, A.R., Strand, S.C. et al. Methods for functional assessment after C7 spinal cord hemisection in the rhesus monkey Neurorehabil. Neural Repair, 26 (2012),pp. 556-569
|
[11] |
Reimer, M.M., Kuscha, V., Wyatt, C. et al. Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish J. Neurosci., 29 (2009),pp. 15073-15082
|
[12] |
Reimer, M.M., Sorensen, I., Kuscha, V. et al. Motor neuron regeneration in adult zebrafish J. Neurosci., 28 (2008),pp. 8510-8516
|
[13] |
Sakai, K., Yamamoto, A., Matsubara, K. et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms J. Clin. Invest., 122 (2012),pp. 80-90
|
[14] |
van Raamsdonk, W., Maslam, S., de Jong, D.H. et al. Long term effects of spinal cord transection in zebrafish: swimming performances, and metabolic properties of the neuromuscular system Acta Histochem., 100 (1998),pp. 117-131
|
[15] |
van Raamsdonk, W., Smit-Onel, M.J., Maslam, S. et al. Changes in the synaptology of spinal motoneurons in zebrafish following spinal cord transection Acta Histochem., 100 (1998),pp. 133-148
|
[16] |
Xue, H.G., Yang, C.Y., Ito, H. The anterograde and retrograde axonal transport of biotinylated dextran amine and biocytin in the nervous system of teleosts Brain Res. Brain Res. Protoc., 13 (2004),pp. 106-114
|
[17] |
Yu, Y.M., Cristofanilli, M., Valiveti, A. et al. The extracellular matrix glycoprotein tenascin-C promotes locomotor recovery after spinal cord injury in adult zebrafish Neuroscience, 183 (2011),pp. 238-250
|
[18] |
Yu, Y.M., Gibbs, K.M., Davila, J. et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish Eur. J. Neurosci., 33 (2011),pp. 1587-1597
|