[1] |
Adams, B.R., Hawkins, A.J., Povirk, L.F. et al. ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells Aging (Albany NY), 2 (2010),pp. 582-596
|
[2] |
Akyuz, N., Boehden, G.S., Susse, S. et al. DNA substrate dependence of p53-mediated regulation of double-strand break repair Mol. Cell. Biol., 22 (2002),pp. 6306-6317
|
[3] |
Certo, M.T., Ryu, B.Y., Annis, J.E. et al. Tracking genome engineering outcome at individual DNA breakpoints Nat. Methods, 8 (2011),pp. 671-676
|
[4] |
Chen, J., Ng, S.M., Chang, C. et al. Genes Dev., 23 (2009),pp. 278-290
|
[5] |
Ciccia, A., Elledge, S.J. The DNA damage response: making it safe to play with knives Mol. Cell, 40 (2010),pp. 179-204
|
[6] |
Colleaux, L., D'Auriol, L., Galibert, F. et al. Recognition and cleavage site of the intron-encoded omega transposase Proc. Natl. Acad. Sci. USA, 85 (1988),pp. 6022-6026
|
[7] |
Dudas, A., Chovanec, M. DNA double-strand break repair by homologous recombination Mutat. Res., 566 (2004),pp. 131-167
|
[8] |
Hagmann, M., Adlkofer, K., Pfeiffer, P. et al. Biol. Chem. Hoppe Seyler, 377 (1996),pp. 239-250
|
[9] |
Hagmann, M., Bruggmann, R., Xue, L. et al. Biol. Chem., 379 (1998),pp. 673-681
|
[10] |
Hakem, R. DNA-damage repair; the good, the bad, and the ugly EMBO J., 27 (2008),pp. 589-605
|
[11] |
Hiom, K. Coping with DNA double strand breaks DNA Repair (Amst), 9 (2010),pp. 1256-1263
|
[12] |
Ivanov, E.L., Sugawara, N., Fishman-Lobell, J. et al. Genetics, 142 (1996),pp. 693-704
|
[13] |
Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases Trends Genet., 12 (1996),pp. 224-228
|
[14] |
Keimling, M., Wiesmuller, L. DNA double-strand break repair activities in mammary epithelial cells – influence of endogenous p53 variants Carcinogenesis, 30 (2009),pp. 1260-1268
|
[15] |
Lieber, M.R., Ma, Y., Pannicke, U. et al. Mechanism and regulation of human non-homologous DNA end-joining Nat. Rev. Mol. Cell Biol., 4 (2003),pp. 712-720
|
[16] |
Mills, K.D., Ferguson, D.O., Essers, J. et al. Rad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability Genes Dev., 18 (2004),pp. 1283-1292
|
[17] |
Orii, K.E., Lee, Y., Kondo, N. et al. Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 10017-10022
|
[18] |
Pierce, A.J., Johnson, R.D., Thompson, L.H. et al. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells Genes Dev., 13 (1999),pp. 2633-2638
|
[19] |
Porter, G., Westmoreland, J., Priebe, S. et al. Genetics, 143 (1996),pp. 755-767
|
[20] |
Sung, P., Krejci, L., Van, K.S. et al. Rad51 recombinase and recombination mediators J. Biol. Chem., 278 (2003),pp. 42729-42732
|
[21] |
Thoms, K.M., Kuschal, C., Emmert, S. Lessons learned from DNA repair defective syndromes Exp. Dermatol., 16 (2007),pp. 532-544
|
[22] |
Tichy, E.D., Pillai, R., Deng, L. et al. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks Stem Cells Dev., 19 (2010),pp. 1699-1711
|
[23] |
Tichy, E.D., Stambrook, P.J. DNA repair in murine embryonic stem cells and differentiated cells Exp. Cell Res., 314 (2008),pp. 1929-1936
|
[24] |
Weinstock, D.M., Nakanishi, K., Helgadottir, H.R. et al. Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase Methods Enzymol., 409 (2006),pp. 524-540
|
[25] |
Weterings, E., Chen, D.J. The endless tale of non-homologous end-joining Cell Res., 18 (2008),pp. 114-124
|
[26] |
Wilson, J.H., Berget, P.B., Pipas, J.M. Somatic cells efficiently join unrelated DNA segments end-to-end Mol. Cell. Biol., 2 (1982),pp. 1258-1269
|