[1] |
Cai, C.L., Martin, J.C., Sun, Y. et al. A myocardial lineage derives from Tbx18 epicardial cells Nature, 454 (2008),pp. 104-108
|
[2] |
Choi, W.Y., Poss, K.D. Cardiac regeneration Curr. Top. Dev. Biol., 100 (2012),pp. 319-344
|
[3] |
Christoffels, V.M., Grieskamp, T., Norden, J. et al. Tbx18 and the fate of epicardial progenitors Nature, 456 (2009),pp. E8-E9
|
[4] |
de Pater, E., Clijsters, L., Marques, S.R. et al. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart Development, 136 (2009),pp. 1633-1641
|
[5] |
Evans, S.M., Yelon, D., Conlon, F.L. et al. Myocardial lineage development Circ. Res., 107 (2010),pp. 1428-1444
|
[6] |
Fishman, M.C., Chien, K.R. Fashioning the vertebrate heart: earliest embryonic decisions Development, 124 (1997),pp. 2099-2117
|
[7] |
Fishman, M.C., Olson, E.N. Parsing the heart: genetic modules for organ assembly Cell, 91 (1997),pp. 153-156
|
[8] |
Gupta, V., Poss, K.D. Clonally dominant cardiomyocytes direct heart morphogenesis Nature, 484 (2012),pp. 479-484
|
[9] |
Hami, D., Grimes, A.C., Tsai, H.J. et al. Zebrafish cardiac development requires a conserved secondary heart field Development, 138 (2011),pp. 2389-2398
|
[10] |
Hsieh, P.C., Segers, V.F., Davis, M.E. et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury Nat. Med., 13 (2007),pp. 970-974
|
[11] |
Hu, D.S., Gu, D.F. Epidemiological studies for cardiovascular diseases in China from 1980 to 2010 Zhonghua Liu Xing Bing Xue Za Zhi, 32 (2011),pp. 1059-1064
|
[12] |
Hutson, M.R., Kirby, M.L. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations Semin. Cell Dev. Biol., 18 (2007),pp. 101-110
|
[13] |
Jopling, C., Sleep, E., Raya, M. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation Nature, 464 (2010),pp. 606-609
|
[14] |
Kathiresan, S., Srivastava, D. Genetics of human cardiovascular disease Cell, 148 (2012),pp. 1242-1257
|
[15] |
Katz, T.C., Singh, M.K., Degenhardt, K. et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells Dev. Cell, 22 (2012),pp. 639-650
|
[16] |
Keegan, B.R., Feldman, J.L., Begemann, G. et al. Retinoic acid signaling restricts the cardiac progenitor pool Science, 307 (2005),pp. 247-249
|
[17] |
Keegan, B.R., Meyer, D., Yelon, D. Organization of cardiac chamber progenitors in the zebrafish blastula Development, 131 (2004),pp. 3081-3091
|
[18] |
Kelly, R.G., Brown, N.A., Buckingham, M.E. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm Dev. Cell, 1 (2001),pp. 435-440
|
[19] |
Kikuchi, K., Gupta, V., Wang, J. et al. Development, 138 (2011),pp. 2895-2902
|
[20] |
Kikuchi, K., Holdway, J.E., Major, R.J. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration Dev. Cell., 20 (2011),pp. 397-404
|
[21] |
Kikuchi, K., Holdway, J.E., Werdich, A.A. et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes Nature, 464 (2010),pp. 601-605
|
[22] |
Kim, J., Wu, Q., Zhang, Y. et al. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 17206-17210
|
[23] |
Kuhn, E.N., Wu, S.M. Origin of cardiac progenitor cells in the developing and postnatal heart J. Cell. Physiol., 225 (2010),pp. 321-325
|
[24] |
Lazic, S., Scott, I.C. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish Dev. Biol., 354 (2011),pp. 123-133
|
[25] |
Lee, R.R.K., Stainier, D.Y.R., Weinstein, B.M. et al. Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field Development, 120 (1994),pp. 3361-3366
|
[26] |
Lepilina, A., Coon, A.N., Kikuchi, K. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration Cell, 127 (2006),pp. 607-619
|
[27] |
Li, F., Wang, X., Capasso, J.M. et al. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development J. Mol. Cell. Cardiol., 28 (1996),pp. 1737-1746
|
[28] |
Li, Y.X., Zdanowicz, M., Young, L. et al. Cardiac neural crest in zebrafish embryos contributes to myocardial cell lineage and early heart function Dev. Dyn., 226 (2003),pp. 540-550
|
[29] |
Liu, J., Stainier, D.Y. Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish Circ. Res., 106 (2010),pp. 1818-1828
|
[30] |
Mjaatvedt, C.H., Nakaoka, T., Moreno-Rodriguez, R. et al. The outflow tract of the heart is recruited from a novel heart-forming field Dev. Biol., 238 (2001),pp. 97-109
|
[31] |
Olson, E.N. Gene regulatory networks in the evolution and development of the heart Science, 313 (2006),pp. 1922-1927
|
[32] |
Palencia-Desai, S., Kohli, V., Kang, J. et al. Vascular endothelial and endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp/Etv2 function Development, 138 (2011),pp. 4721-4732
|
[33] |
Pérez-Pomares, J.M., de la Pompa, J.L. Signaling during epicardium and coronary vessel development Circ. Res., 109 (2011),pp. 1429-1442
|
[34] |
Porrello, E.R., Mahmoud, A.I., Simpson, E. et al. Transient regenerative potential of the neonatal mouse heart Science, 331 (2011),pp. 1078-1080
|
[35] |
Poss, K.D. Advances in understanding tissue regenerative capacity and mechanisms in animals Annu. Rev. Genet., 11 (2010),pp. 710-722
|
[36] |
Poss, K.D., Wilson, L.G., Keating, M.T. Heart regeneration in zebrafish Science, 298 (2002),pp. 2188-2190
|
[37] |
Reifers, F., Walsh, E.C., Léger, S. et al. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar) Development, 127 (2000),pp. 225-235
|
[38] |
Reiter, J.F., Verkade, H., Stainier, D.Y. Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5 Dev. Biol., 234 (2001),pp. 330-338
|
[39] |
Sato, M., Yost, H.J. Cardiac neural crest contributes to cardiomyogenesis in zebrafish Dev. Biol., 257 (2003),pp. 127-139
|
[40] |
Schoenebeck, J.J., Keegan, B.R., Yelon, D. Vessel and blood specification override cardiac potential in anterior mesoderm Dev. Cell, 13 (2007),pp. 254-267
|
[41] |
Serbedzija, G., Chen, J.-N., Fishman, M.C. Regulation in the heart field of zebrafish Development, 125 (1998),pp. 1095-1101
|
[42] |
Serluca, F.C. Development of the proepicardial organ in the zebrafish Dev. Biol., 315 (2008),pp. 18-27
|
[43] |
Sorrell, M.R., Waxman, J.S. Restraint of Fgf8 signaling by retinoic acid signaling is required for proper heart and forelimb formation Dev. Biol., 358 (2011),pp. 44-55
|
[44] |
Stainier, D.Y. Zebrafish genetics and vertebrate heart formation Nat. Rev. Genet., 2 (2001),pp. 39-48
|
[45] |
Stainier, D.Y.R., Lee, R.K., Fishman, M.C. Cardiovascular development in the zebrafish: I. Myocardial fate map and heart tube formation Development, 119 (1993),pp. 31-40
|
[46] |
Stainier, D.Y.R., Weinstein, B.M., Detrich, H.W.I. et al. Development, 121 (1995),pp. 3141-3150
|
[47] |
Stoick-Cooper, C.L., Weidinger, G., Riehle, K.J. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration Development, 134 (2007),pp. 479-489
|
[48] |
Thomas, N.A., Koudijs, M., van Eeden, F.J. et al. Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential Development, 135 (2008),pp. 3789-3799
|
[49] |
Vincent, S.D., Buckingham, M.E. How to make a heart: the origin and regulation of cardiac progenitor cells Curr. Top. Dev. Biol., 90 (2010),pp. 1-41
|
[50] |
Waldo, K.L., Kumiski, D.H., Wallis, K.T. et al. Conotruncal myocardium arises from a secondary heart field Development, 128 (2001),pp. 3179-3188
|
[51] |
Waxman, J.S., Keegan, B.R., Roberts, R.W. et al. Hoxb5b acts downstream of retinoic acid signaling in the forelimb field to restrict heart field potential in zebrafish Dev. Cell, 15 (2008),pp. 923-934
|
[52] |
Xiong, J.-W. Molecular and developmental biology of the hemangioblast Dev. Dyn., 237 (2008),pp. 1218-1231
|
[53] |
Xiong, J.-W., Yu, Q., Zhang, J. et al. An acyltransferase controls the generation of hematopoietic and endothelial lineages in zebrafish Circ. Res., 102 (2008),pp. 1057-1064
|
[54] |
Yi, B.A., Wernet, O., Chien, K.R. Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration J. Clin. Invest., 120 (2010),pp. 20-28
|
[55] |
Yin, V.P., Lepilina, A., Smith, A. et al. Regulation of zebrafish heart regeneration by miR-133 Dev. Biol., 365 (2012),pp. 319-327
|
[56] |
Zhou, B., Ma, Q., Rajagopal, S. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart Nature, 454 (2008),pp. 109-113
|
[57] |
Zhou, Y., Cashman, T.J., Nevis, K.R. et al. Latent TGF-β binding protein 3 identifies a second heart field in zebrafish Nature, 474 (2011),pp. 645-648
|