5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 9
Sep.  2012
Turn off MathJax
Article Contents

Overlapping Cardiac Programs in Heart Development and Regeneration

doi: 10.1016/j.jgg.2012.07.005
More Information
  • Corresponding author: E-mail address: jingwei_xiong@pku.edu.cn (Jing-Wei Xiong)
  • Received Date: 2012-05-06
  • Accepted Date: 2012-07-07
  • Rev Recd Date: 2012-07-02
  • Available Online: 2012-08-11
  • Publish Date: 2012-09-20
  • Gaining cellular and molecular insights into heart development and regeneration will likely provide new therapeutic targets and opportunities for cardiac regenerative medicine, one of the most urgent clinical needs for heart failure. Here we present a review on zebrafish heart development and regeneration, with a particular focus on early cardiac progenitor development and their contribution to building embryonic heart, as well as cellular and molecular programs in adult zebrafish heart regeneration. We attempt to emphasize that the signaling pathways shaping cardiac progenitors in heart development may also be redeployed during the progress of adult heart regeneration. A brief perspective highlights several important and promising research areas in this exciting field.
  • loading
  • [1]
    Cai, C.L., Martin, J.C., Sun, Y. et al. A myocardial lineage derives from Tbx18 epicardial cells Nature, 454 (2008),pp. 104-108
    [2]
    Choi, W.Y., Poss, K.D. Cardiac regeneration Curr. Top. Dev. Biol., 100 (2012),pp. 319-344
    [3]
    Christoffels, V.M., Grieskamp, T., Norden, J. et al. Tbx18 and the fate of epicardial progenitors Nature, 456 (2009),pp. E8-E9
    [4]
    de Pater, E., Clijsters, L., Marques, S.R. et al. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart Development, 136 (2009),pp. 1633-1641
    [5]
    Evans, S.M., Yelon, D., Conlon, F.L. et al. Myocardial lineage development Circ. Res., 107 (2010),pp. 1428-1444
    [6]
    Fishman, M.C., Chien, K.R. Fashioning the vertebrate heart: earliest embryonic decisions Development, 124 (1997),pp. 2099-2117
    [7]
    Fishman, M.C., Olson, E.N. Parsing the heart: genetic modules for organ assembly Cell, 91 (1997),pp. 153-156
    [8]
    Gupta, V., Poss, K.D. Clonally dominant cardiomyocytes direct heart morphogenesis Nature, 484 (2012),pp. 479-484
    [9]
    Hami, D., Grimes, A.C., Tsai, H.J. et al. Zebrafish cardiac development requires a conserved secondary heart field Development, 138 (2011),pp. 2389-2398
    [10]
    Hsieh, P.C., Segers, V.F., Davis, M.E. et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury Nat. Med., 13 (2007),pp. 970-974
    [11]
    Hu, D.S., Gu, D.F. Epidemiological studies for cardiovascular diseases in China from 1980 to 2010 Zhonghua Liu Xing Bing Xue Za Zhi, 32 (2011),pp. 1059-1064
    [12]
    Hutson, M.R., Kirby, M.L. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations Semin. Cell Dev. Biol., 18 (2007),pp. 101-110
    [13]
    Jopling, C., Sleep, E., Raya, M. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation Nature, 464 (2010),pp. 606-609
    [14]
    Kathiresan, S., Srivastava, D. Genetics of human cardiovascular disease Cell, 148 (2012),pp. 1242-1257
    [15]
    Katz, T.C., Singh, M.K., Degenhardt, K. et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells Dev. Cell, 22 (2012),pp. 639-650
    [16]
    Keegan, B.R., Feldman, J.L., Begemann, G. et al. Retinoic acid signaling restricts the cardiac progenitor pool Science, 307 (2005),pp. 247-249
    [17]
    Keegan, B.R., Meyer, D., Yelon, D. Organization of cardiac chamber progenitors in the zebrafish blastula Development, 131 (2004),pp. 3081-3091
    [18]
    Kelly, R.G., Brown, N.A., Buckingham, M.E. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm Dev. Cell, 1 (2001),pp. 435-440
    [19]
    Kikuchi, K., Gupta, V., Wang, J. et al. Development, 138 (2011),pp. 2895-2902
    [20]
    Kikuchi, K., Holdway, J.E., Major, R.J. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration Dev. Cell., 20 (2011),pp. 397-404
    [21]
    Kikuchi, K., Holdway, J.E., Werdich, A.A. et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes Nature, 464 (2010),pp. 601-605
    [22]
    Kim, J., Wu, Q., Zhang, Y. et al. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 17206-17210
    [23]
    Kuhn, E.N., Wu, S.M. Origin of cardiac progenitor cells in the developing and postnatal heart J. Cell. Physiol., 225 (2010),pp. 321-325
    [24]
    Lazic, S., Scott, I.C. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish Dev. Biol., 354 (2011),pp. 123-133
    [25]
    Lee, R.R.K., Stainier, D.Y.R., Weinstein, B.M. et al. Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field Development, 120 (1994),pp. 3361-3366
    [26]
    Lepilina, A., Coon, A.N., Kikuchi, K. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration Cell, 127 (2006),pp. 607-619
    [27]
    Li, F., Wang, X., Capasso, J.M. et al. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development J. Mol. Cell. Cardiol., 28 (1996),pp. 1737-1746
    [28]
    Li, Y.X., Zdanowicz, M., Young, L. et al. Cardiac neural crest in zebrafish embryos contributes to myocardial cell lineage and early heart function Dev. Dyn., 226 (2003),pp. 540-550
    [29]
    Liu, J., Stainier, D.Y. Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish Circ. Res., 106 (2010),pp. 1818-1828
    [30]
    Mjaatvedt, C.H., Nakaoka, T., Moreno-Rodriguez, R. et al. The outflow tract of the heart is recruited from a novel heart-forming field Dev. Biol., 238 (2001),pp. 97-109
    [31]
    Olson, E.N. Gene regulatory networks in the evolution and development of the heart Science, 313 (2006),pp. 1922-1927
    [32]
    Palencia-Desai, S., Kohli, V., Kang, J. et al. Vascular endothelial and endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp/Etv2 function Development, 138 (2011),pp. 4721-4732
    [33]
    Pérez-Pomares, J.M., de la Pompa, J.L. Signaling during epicardium and coronary vessel development Circ. Res., 109 (2011),pp. 1429-1442
    [34]
    Porrello, E.R., Mahmoud, A.I., Simpson, E. et al. Transient regenerative potential of the neonatal mouse heart Science, 331 (2011),pp. 1078-1080
    [35]
    Poss, K.D. Advances in understanding tissue regenerative capacity and mechanisms in animals Annu. Rev. Genet., 11 (2010),pp. 710-722
    [36]
    Poss, K.D., Wilson, L.G., Keating, M.T. Heart regeneration in zebrafish Science, 298 (2002),pp. 2188-2190
    [37]
    Reifers, F., Walsh, E.C., Léger, S. et al. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar) Development, 127 (2000),pp. 225-235
    [38]
    Reiter, J.F., Verkade, H., Stainier, D.Y. Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5 Dev. Biol., 234 (2001),pp. 330-338
    [39]
    Sato, M., Yost, H.J. Cardiac neural crest contributes to cardiomyogenesis in zebrafish Dev. Biol., 257 (2003),pp. 127-139
    [40]
    Schoenebeck, J.J., Keegan, B.R., Yelon, D. Vessel and blood specification override cardiac potential in anterior mesoderm Dev. Cell, 13 (2007),pp. 254-267
    [41]
    Serbedzija, G., Chen, J.-N., Fishman, M.C. Regulation in the heart field of zebrafish Development, 125 (1998),pp. 1095-1101
    [42]
    Serluca, F.C. Development of the proepicardial organ in the zebrafish Dev. Biol., 315 (2008),pp. 18-27
    [43]
    Sorrell, M.R., Waxman, J.S. Restraint of Fgf8 signaling by retinoic acid signaling is required for proper heart and forelimb formation Dev. Biol., 358 (2011),pp. 44-55
    [44]
    Stainier, D.Y. Zebrafish genetics and vertebrate heart formation Nat. Rev. Genet., 2 (2001),pp. 39-48
    [45]
    Stainier, D.Y.R., Lee, R.K., Fishman, M.C. Cardiovascular development in the zebrafish: I. Myocardial fate map and heart tube formation Development, 119 (1993),pp. 31-40
    [46]
    Stainier, D.Y.R., Weinstein, B.M., Detrich, H.W.I. et al. Development, 121 (1995),pp. 3141-3150
    [47]
    Stoick-Cooper, C.L., Weidinger, G., Riehle, K.J. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration Development, 134 (2007),pp. 479-489
    [48]
    Thomas, N.A., Koudijs, M., van Eeden, F.J. et al. Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential Development, 135 (2008),pp. 3789-3799
    [49]
    Vincent, S.D., Buckingham, M.E. How to make a heart: the origin and regulation of cardiac progenitor cells Curr. Top. Dev. Biol., 90 (2010),pp. 1-41
    [50]
    Waldo, K.L., Kumiski, D.H., Wallis, K.T. et al. Conotruncal myocardium arises from a secondary heart field Development, 128 (2001),pp. 3179-3188
    [51]
    Waxman, J.S., Keegan, B.R., Roberts, R.W. et al. Hoxb5b acts downstream of retinoic acid signaling in the forelimb field to restrict heart field potential in zebrafish Dev. Cell, 15 (2008),pp. 923-934
    [52]
    Xiong, J.-W. Molecular and developmental biology of the hemangioblast Dev. Dyn., 237 (2008),pp. 1218-1231
    [53]
    Xiong, J.-W., Yu, Q., Zhang, J. et al. An acyltransferase controls the generation of hematopoietic and endothelial lineages in zebrafish Circ. Res., 102 (2008),pp. 1057-1064
    [54]
    Yi, B.A., Wernet, O., Chien, K.R. Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration J. Clin. Invest., 120 (2010),pp. 20-28
    [55]
    Yin, V.P., Lepilina, A., Smith, A. et al. Regulation of zebrafish heart regeneration by miR-133 Dev. Biol., 365 (2012),pp. 319-327
    [56]
    Zhou, B., Ma, Q., Rajagopal, S. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart Nature, 454 (2008),pp. 109-113
    [57]
    Zhou, Y., Cashman, T.J., Nevis, K.R. et al. Latent TGF-β binding protein 3 identifies a second heart field in zebrafish Nature, 474 (2011),pp. 645-648
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return