5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 9
Sep.  2012
Turn off MathJax
Article Contents

Reverse Genetic Approaches in Zebrafish

doi: 10.1016/j.jgg.2012.07.004
More Information
  • Corresponding author: E-mail address: shuolin@ucla.edu (Shuo Lin); E-mail address: bzhang@pku.edu.cn (Bo Zhang)
  • Received Date: 2012-06-10
  • Accepted Date: 2012-07-07
  • Rev Recd Date: 2012-07-03
  • Available Online: 2012-08-11
  • Publish Date: 2012-09-20
  • Zebrafish (Danio rerio) is a well-established vertebrate animal model. A comprehensive collection of reverse genetics tools has been developed for studying gene function in this useful organism. Morpholino is the most widely used reagent to knock down target gene expression post-transcriptionally. For a long time, targeted genome modification has been heavily relied on large-scale traditional forward genetic screens, such as ENU (N-ethyl-N-nitrosourea) mutagenesis derived TILLING (Targeting Induced Local Lesions IN Genomes) strategy and pseudo-typed retrovirus mediated insertional mutagenesis. Recently, engineered endonucleases, including ZFNs (zinc finger nucleases) and TALENs (transcription activator-like effector nucleases), provide new and efficient strategies to directly generate site-specific indel mutations by inducing double strand breaks in target genes. Here we summarize the major reverse genetic approaches for loss-of-function studies used and emerging in zebrafish, including strategies based on genome-wide mutagenesis and methods for site-specific gene targeting. Future directions and expectations will also be discussed.
  • loading
  • [1]
    Amack, J.D., Yost, H.J. Curr. Biol., 14 (2004),pp. 685-690
    [2]
    Amsterdam, A. Insertional mutagenesis in zebrafish Dev. Dyn., 228 (2003),pp. 523-534
    [3]
    Amsterdam, A., Burgess, S., Golling, G. et al. A large-scale insertional mutagenesis screen in zebrafish Genes Dev., 13 (1999),pp. 2713-2724
    [4]
    Amsterdam, A., Nissen, R.M., Sun, Z. et al. Identification of 315 genes essential for early zebrafish development Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 12792-12797
    [5]
    Ben, J., Elworthy, S., Ng, A.S. et al. Development, 138 (2011),pp. 4969-4978
    [6]
    Bibikova, M., Beumer, K., Trautman, J.K. et al. Enhancing gene targeting with designed zinc finger nucleases Science, 300 (2003),p. 764
    [7]
    Briggs, A.W., Rios, X., Chari, R. et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers Nucleic Acids Res., 40 (2012),p. e117
    [8]
    Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
    [9]
    Cade, L., Reyon, D., Hwang, W.Y. et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs Nucleic Acids Res. (2012)
    [10]
    Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [11]
    Chakrabarti, S., Streisinger, G., Singer, F. et al. Genetics, 103 (1983),pp. 109-123
    [12]
    Chen, F., Pruett-Miller, S.M., Huang, Y. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases Nat. Methods, 8 (2011),pp. 753-755
    [13]
    Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
    [14]
    Clark, K.J., Balciunas, D., Pogoda, H.M. et al. Nat. Methods, 8 (2011),pp. 506-512
    [15]
    Cong, L., Zhou, R., Kuo, Y.C. et al. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains Nat. Commun., 3 (2012),p. 968
    [16]
    Cui, X., Ji, D., Fisher, D.A. et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases Nat. Biotechnol., 29 (2011),pp. 64-67
    [17]
    Cui, Z., Yang, Y., Kaufman, C.D. et al. RecA-mediated, targeted mutagenesis in zebrafish Mar. Biotechnol. (NY), 5 (2003),pp. 174-184
    [18]
    Davidson, A.E., Balciunas, D., Mohn, D. et al. Dev. Biol., 263 (2003),pp. 191-202
    [19]
    de Bruijn, E., Cuppen, E., Feitsma, H. Highly efficient ENU mutagenesis in zebrafish Methods Mol. Biol., 546 (2009),pp. 3-12
    [20]
    Dong, M., Fu, Y.F., Du, T.T. et al. Heritable and lineage-specific gene knockdown in zebrafish embryo PLoS ONE, 4 (2009),p. e6125
    [21]
    Dong, Z., Ge, J., Li, K. et al. PLoS ONE, 6 (2011),p. e28897
    [22]
    Doyon, Y., McCammon, J.M., Miller, J.C. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases Nat. Biotechnol., 26 (2008),pp. 702-708
    [23]
    Driever, W., Solnica-Krezel, L., Schier, A.F. et al. A genetic screen for mutations affecting embryogenesis in zebrafish Development, 123 (1996),pp. 37-46
    [24]
    Eisen, J.S., Smith, J.C. Controlling morpholino experiments: don't stop making antisense Development, 135 (2008),pp. 1735-1743
    [25]
    Emelyanov, A., Gao, Y., Naqvi, N.I. et al. Trans-kingdom transposition of the maize dissociation element Genetics, 174 (2006),pp. 1095-1104
    [26]
    Foley, J.E., Yeh, J.-R.J., Maeder, M.L. et al. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN) PLoS ONE, 4 (2009),p. e4348
    [27]
    Geibetaler, R., Scholze, H., Hahn, S. et al. Transcriptional activators of human genes with programmable DNA-specificity PLoS ONE, 6 (2011),p. e19509
    [28]
    Geurts, A.M., Cost, G.J., Freyvert, Y. et al. Science, 325 (2009),p. 433
    [29]
    Golling, G., Amsterdam, A., Sun, Z. et al. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development Nat. Genet., 31 (2002),pp. 135-140
    [30]
    Gupta, A., Christensen, R.G., Rayla, A.L. et al. An optimized two-finger archive for ZFN-mediated gene targeting Nat. Methods, 9 (2012),pp. 588-590
    [31]
    Gupta, A., Meng, X., Zhu, L.J. et al. Nucleic Acids Res., 39 (2011),pp. 381-392
    [32]
    Haffter, P., Granato, M., Brand, M. et al. Development, 123 (1996),pp. 1-36
    [33]
    Hagmann, M., Bruggmann, R., Xue, L. et al. Biol. Chem., 379 (1998),pp. 673-681
    [34]
    Hockemeyer, D., Wang, H., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
    [35]
    Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
    [36]
    Hyde, D.R., Godwin, A.R., Thummel, R. J. Vis. Exp. (2012),p. e3632
    [37]
    Kawakami, K., Shima, A., Kawakami, N. Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 11403-11408
    [38]
    Kawakami, K., Takeda, H., Kawakami, N. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish Dev. Cell, 7 (2004),pp. 133-144
    [39]
    Kim, E., Kim, S., Kim, D.H. et al. Precision genome engineering with programmable DNA-nicking enzymes Genome Res., 22 (2012),pp. 1327-1333
    [40]
    Koga, A., Cheah, F.S., Hamaguchi, S. et al. Dev. Dyn., 237 (2008),pp. 2466-2474
    [41]
    Kondrychyn, I., Garcia-Lecea, M., Emelyanov, A. et al. BMC Genomics, 10 (2009),p. 418
    [42]
    Lawson, N.D., Wolfe, S.A. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish Dev. Cell, 21 (2011),pp. 48-64
    [43]
    Lee, H.J., Kim, E., Kim, J.S. Targeted chromosomal deletions in human cells using zinc finger nucleases Genome Res., 20 (2010),pp. 81-89
    [44]
    Li, L., Piatek, M.J., Atef, A. et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification Plant Mol. Biol., 78 (2012),pp. 407-416
    [45]
    Li, T., Huang, S., Jiang, W.Z. et al. Nucleic Acids Res., 39 (2011),pp. 359-372
    [46]
    Li, T., Huang, S., Zhao, X. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes Nucleic Acids Res., 39 (2011),pp. 6315-6325
    [47]
    Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
    [48]
    Lieschke, G.J., Currie, P.D. Animal models of human disease: zebrafish swim into view Nat. Rev. Genet., 8 (2007),pp. 353-367
    [49]
    Lin, S., Gaiano, N., Culp, P. et al. Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish Science, 265 (1994),pp. 666-669
    [50]
    Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
    [51]
    Lombardo, A., Genovese, P., Beausejour, C.M. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery Nat. Biotechnol., 25 (2007),pp. 1298-1306
    [52]
    Maddison, L.A., Lu, J., Chen, W. Generating conditional mutations in zebrafish using gene-trap mutagenesis Methods Cell Biol., 104 (2011),pp. 1-22
    [53]
    Maeder, M.L., Thibodeau-Beganny, S., Osiak, A. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification Mol. Cell, 31 (2008),pp. 294-301
    [54]
    Mahfouz, M.M., Li, L., Shamimuzzaman, M. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 2623-2628
    [55]
    Meng, X., Noyes, M.B., Zhu, L.J. et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases Nat. Biotechnol., 26 (2008),pp. 695-701
    [56]
    Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
    [57]
    Moens, C.B., Donn, T.M., Wolf-Saxon, E.R. et al. Reverse genetics in zebrafish by TILLING Brief Funct. Genomic. Proteomic., 7 (2008),pp. 454-459
    [58]
    Moore, F.E., Reyon, D., Sander, J.D. et al. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs) PLoS ONE, 7 (2012),p. e37877
    [59]
    Morbitzer, R., Elsaesser, J., Hausner, J. et al. Assembly of custom TALE-type DNA binding domains by modular cloning Nucleic Acids Res., 39 (2011),pp. 5790-5799
    [60]
    Morbitzer, R., Romer, P., Boch, J. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 21617-21622
    [61]
    Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
    [62]
    Mullins, M.C., Hammerschmidt, M., Haffter, P. et al. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate Curr. Biol., 4 (1994),pp. 189-202
    [63]
    Nasevicius, A., Ekker, S.C. Effective targeted gene ‘knockdown’ in zebrafish Nat. Genet., 26 (2000),pp. 216-220
    [64]
    Ochiai, H., Sakamoto, N., Fujita, K. et al. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 10915-10920
    [65]
    Parinov, S., Kondrichin, I., Korzh, V. et al. Dev. Dyn., 231 (2004),pp. 449-459
    [66]
    Patton, E.E., Zon, L.I. The art and design of genetic screens: zebrafish Nat. Rev. Genet., 2 (2001),pp. 956-966
    [67]
    Porteus, M.H., Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells Science, 300 (2003),p. 763
    [68]
    Ramirez, C.L., Certo, M.T., Mussolino, C. et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects Nucleic Acids Res., 40 (2012),pp. 5560-5568
    [69]
    Ramirez, C.L., Foley, J.E., Wright, D.A. et al. Unexpected failure rates for modular assembly of engineered zinc fingers Nat. Methods, 5 (2008),pp. 374-375
    [70]
    Reyon, D., Tsai, S.Q., Khayter, C. et al. FLASH assembly of TALENs for high-throughput genome editing Nat. Biotechnol., 30 (2012),pp. 460-465
    [71]
    Robu, M.E., Larson, J.D., Nasevicius, A. et al. PLoS Genet., 3 (2007),p. e78
    [72]
    Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
    [73]
    Sander, J.D., Dahlborg, E.J., Goodwin, M.J. et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA) Nat. Methods, 8 (2011),pp. 67-69
    [74]
    Shestopalov, I.A., Pitt, C.L., Chen, J.K. Spatiotemporal resolution of the Ntla transcriptome in axial mesoderm development Nat. Chem. Biol., 8 (2012),pp. 270-276
    [75]
    Shukla, V.K., Doyon, Y., Miller, J.C. et al. Nature, 459 (2009),pp. 437-441
    [76]
    Siekmann, A.F., Standley, C., Fogarty, K.E. et al. Chemokine signaling guides regional patterning of the first embryonic artery Genes Dev., 23 (2009),pp. 2272-2277
    [77]
    Solnica-Krezel, L., Schier, A.F., Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline Genetics, 136 (1994),pp. 1401-1420
    [78]
    Streubel, J., Blucher, C., Landgraf, A. et al. TAL effector RVD specificities and efficiencies Nat. Biotechnol., 30 (2012),pp. 593-595
    [79]
    Su, J., Zhu, Z., Wang, Y. et al. Mar. Biotechnol. (NY), 10 (2008),pp. 262-269
    [80]
    Su, J., Zhu, Z., Xiong, F. et al. Hybrid cytomegalovirus-U6 promoter-based plasmid vectors improve efficiency of RNA interference in zebrafish Mar. Biotechnol. (NY), 10 (2008),pp. 511-517
    [81]
    Summerton, J. Morpholino antisense oligomers: the case for an RNase H-independent structural type Biochim. Biophys. Acta, 1489 (1999),pp. 141-158
    [82]
    Summerton, J., Weller, D. Morpholino antisense oligomers: design, preparation, and properties Antisense Nucleic Acid Drug Dev., 7 (1997),pp. 187-195
    [83]
    Tallafuss, A., Gibson, D., Morcos, P. et al. Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish Development, 139 (2012),pp. 1691-1699
    [84]
    Tesson, L., Usal, C., Menoret, S. et al. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
    [85]
    Thummel, R., Bai, S., , Song, P. et al. Dev. Dyn., 235 (2006),pp. 336-346
    [86]
    Thummel, R., Bailey, T.J., Hyde, D.R. J. Vis. Exp. (2011),p. e3603
    [87]
    Tian, T., Zhao, L., Zhao, X.Y. et al. J. Genet. Genomics, 36 (2009),pp. 581-589
    [88]
    Tong, C., Huang, G., Ashton, C. et al. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs J. Genet. Genomics, 39 (2012),pp. 275-280
    [89]
    Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases Nature, 459 (2009),pp. 442-445
    [90]
    Trinh, L.A., Hochgreb, T., Graham, M. et al. A versatile gene trap to visualize and interrogate the function of the vertebrate proteome Genes Dev., 25 (2011),pp. 2306-2320
    [91]
    Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
    [92]
    Walker, C., Streisinger, G. Induction of mutations by gamma-rays in pregonial germ cells of zebrafish embryos Genetics, 103 (1983),pp. 125-136
    [93]
    Wang, D., Jao, L.-E., Zheng, N. et al. Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 12428-12433
    [94]
    Wang, J., Friedman, G., Doyon, Y. et al. Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme Genome Res., 22 (2012),pp. 1316-1326
    [95]
    Wienholds, E., Schulte-Merker, S., Walderich, B. et al. Science, 297 (2002),pp. 99-102
    [96]
    Wood, A.J., Lo, T.W., Zeitler, B. et al. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
    [97]
    Wu, X., Li, Y., Crise, B. et al. Transcription start regions in the human genome are favored targets for MLV integration Science, 300 (2003),pp. 1749-1751
    [98]
    Wu, Y., Zhang, G., Xiong, Q. et al. Integration of double-fluorescence expression vectors into zebrafish genome for the selection of site-directed knockout/knockin Mar. Biotechnol. (NY), 8 (2006),pp. 304-311
    [99]
    Xue, Y.L., Xiao, A., Wen, L. et al. Prog. Biochem. Biophys., 37 (2010),pp. 720-727
    [100]
    Yang, D., Yang, H., Li, W. et al. Cell Res., 21 (2011),pp. 979-982
    [101]
    Yu, S., Luo, J., Song, Z. et al. Cell Res., 21 (2011),pp. 1638-1640
    [102]
    Zhao, L., Zhao, X., Tian, T. et al. Cardiovasc. Res., 80 (2008),pp. 200-208
    [103]
    Zhao, Z., Cao, Y., Li, M. et al. Double-stranded RNA injection produces nonspecific defects in zebrafish Dev. Biol., 229 (2001),pp. 215-223
    [104]
    Zhu, C., Smith, T., McNulty, J. et al. Evaluation and application of modularly assembled zinc-finger nucleases in zebrafish Development, 138 (2011),pp. 4555-4564
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return