[1] |
Bennett, C.M., Kanki, J.P., Rhodes, J. et al. Blood, 98 (2001),pp. 643-651
|
[2] |
Bertrand, J.Y., Chi, N.C., Santoso, B. et al. Haematopoietic stem cells derive directly from aortic endothelium during development Nature, 464 (2010),pp. 108-111
|
[3] |
Bertrand, J.Y., Kim, A.D., Violette, E.P. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo Development, 134 (2007),pp. 4147-4456
|
[4] |
Bolli, N., Payne, E.M., Grabher, C. et al. Blood, 115 (2010),pp. 3329-3340
|
[5] |
Bukrinsky, A., Griffin, K.J., Zhao, Y. et al. Essential role of spi-1-like (spi-1l) in zebrafish myeloid cell differentiation Blood, 113 (2009),pp. 2038-2046
|
[6] |
Colucci-Guyon, E., Tinevez, J.Y., Renshaw, S.A. et al. J. Cell Sci., 124 (2011),pp. 3053-3059
|
[7] |
Corkery, D.P., Dellaire, G., Berman, J.N. Br. J. Haematol., 153 (2011),pp. 786-789
|
[8] |
Craven, S.E., French, D., Ye, W. et al. Loss of Hspa9b in zebrafish recapitulates the ineffective hematopoiesis of the myelodysplastic syndrome Blood, 105 (2005),pp. 3528-3534
|
[9] |
Daas, S.I., Coombs, A.J., Balci, T.B. et al. Blood, 119 (2012),pp. 3585-3594
|
[10] |
Dai, Z.X., Yan, G., Chen, Y.H. et al. Forward genetic screening for zebrafish mutants defective in myelopoiesis J. South Med. Univ., 30 (2010),pp. 1230-1233
|
[11] |
Dayyani, F., Wang, J., Yeh, J.R. et al. Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival Blood, 111 (2008),pp. 4338-4347
|
[12] |
Dobson, J.T., Seibert, J., Teh, E.M. et al. Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination Blood, 112 (2008),pp. 2969-2972
|
[13] |
Doyon, Y., McCammon, J.M., Miller, J.C. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases Nat. Biotechnol., 26 (2008),pp. 702-708
|
[14] |
Draper, B.W., Morcos, P.A., Kimmel, C.B. Genesis, 30 (2001),pp. 154-156
|
[15] |
Driever, W., Solnica-Krezel, L., Schier, A.F. et al. A genetic screen for mutations affecting embryogenesis in zebrafish Development, 123 (1996),pp. 37-46
|
[16] |
Ellett, F., Lieschke, G.J. Zebrafish as a model for vertebrate hematopoiesis Curr. Opin. Pharmacol., 10 (2010),pp. 563-570
|
[17] |
Ellett, F., Pase, L., Hayman, J.W. et al. Blood, 117 (2011),pp. e49-e56
|
[18] |
Forrester, A.M., Grabher, C., McBride, E.R. et al. NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis Br. J. Haematol., 155 (2011),pp. 167-181
|
[19] |
Galloway, J.L., Wingert, R.A., Thisse, C. et al. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos Dev. Cell, 8 (2005),pp. 109-116
|
[20] |
Haffter, P., Granato, M., Brand, M. et al. Development, 123 (1996),pp. 1-36
|
[21] |
Hall, C., Flores, M.V., Storm, T. et al. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish BMC Dev. Biol., 7 (2007),p. 42
|
[22] |
Herbomel, P., Levraud, J.P. Imaging early macrophage differentiation, migration, and behaviors in live zebrafish embryos Methods Mol. Med., 105 (2005),pp. 199-214
|
[23] |
Herbomel, P., Thisse, B., Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo Development, 126 (1999),pp. 3735-3745
|
[24] |
Herbomel, P., Thisse, B., Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process Dev. Biol., 238 (2001),pp. 274-288
|
[25] |
Hogan, B.M., Layton, J.E., Pyati, U.J. et al. Specification of the primitive myeloid precursor pool requires signaling through Alk8 in zebrafish Curr. Biol., 16 (2006),pp. 506-511
|
[26] |
Hsu, K., Traver, D., Kutok, J.L. et al. Blood, 104 (2004),pp. 1291-1297
|
[27] |
Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
|
[28] |
Jin, H., Li, L., Xu, J. et al. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop that confines Pu.1 expression Blood, 119 (2012),pp. 5239-5249
|
[29] |
Jin, H., Sood, R., Xu, J. et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI Development, 136 (2009),pp. 647-654
|
[30] |
Jin, H., Xu, J., Wen, Z. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development Blood, 109 (2007),pp. 5208-5214
|
[31] |
Jing, L., Zon, L.I. Zebrafish as a model for normal and malignant hematopoiesis Dis. Model Mech., 4 (2011),pp. 433-438
|
[32] |
Keegan, B.R., Meyer, D., Yelon, D. Organization of cardiac chamber progenitors in the zebrafish blastula Development, 131 (2004),pp. 3081-3091
|
[33] |
Kissa, K., Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition Nature, 464 (2010),pp. 112-115
|
[34] |
Kissa, K., Murayama, E., Zapata, A. et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization Blood, 111 (2008),pp. 1147-1156
|
[35] |
Kitaguchi, T., Kawakami, K., Kawahara, A. Transcriptional regulation of a myeloid-lineage specific gene lysozyme C during zebrafish myelopoiesis Mech. Dev., 126 (2009),pp. 314-323
|
[36] |
Le Guyader, D., Redd, M.J., Colucci-Guyon, E. et al. Origins and unconventional behavior of neutrophils in developing zebrafish Blood, 111 (2008),pp. 132-141
|
[37] |
Le, X., Langenau, D.M., Keefe, M.D. et al. Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 9410-9415
|
[38] |
Li, L., Jin, H., Xu, J. et al. Blood, 117 (2011),pp. 1359-1369
|
[39] |
Liao, E.C., Paw, B.H., Oates, A.C. et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish Genes Dev., 12 (1998),pp. 621-626
|
[40] |
Lieschke, G.J., Oates, A.C., Crowhurst, M.O. et al. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish Blood, 98 (2001),pp. 3087-3096
|
[41] |
Lieschke, G.J., Oates, A.C., Paw, B.H. et al. Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning Dev. Biol., 246 (2002),pp. 274-295
|
[42] |
Liongue, C., Hall, C.J., O'Connell, B.A. et al. Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration Blood, 113 (2009),pp. 2535-2546
|
[43] |
Liu, F., Patient, R. Genome-wide analysis of the zebrafish ETS family identifies three genes required for hemangioblast differentiation or angiogenesis Circ. Res., 103 (2008),pp. 1147-1154
|
[44] |
Liu, F., Wen, Z. Cloning and expression pattern of the lysozyme C gene in zebrafish Mech. Dev., 113 (2002),pp. 69-72
|
[45] |
Lugo-Villarino, G., Balla, K.M., Stachura, D.L. et al. Identification of dendritic antigen-presenting cells in the zebrafish Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 15850-15855
|
[46] |
Mathias, J.R., Perrin, B.J., Liu, T.X. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish J. Leukoc. Biol., 80 (2006),pp. 1281-1288
|
[47] |
Monteiro, R., Pouget, C., Patient, R. The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1gamma EMBO J., 30 (2011),pp. 1093-1103
|
[48] |
Murayama, E., Kissa, K., Zapata, A. et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development Immunity, 25 (2006),pp. 963-975
|
[49] |
Nasevicius, A., Ekker, S.C. Effective targeted gene ‘knockdown’ in zebrafish Nat. Genet., 26 (2000),pp. 216-220
|
[50] |
Payne, E.M., Bolli, N., Rhodes, J. et al. Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML Blood, 118 (2011),pp. 903-915
|
[51] |
Peri, F., Nusslein-Volhard, C. Cell, 133 (2008),pp. 916-927
|
[52] |
Peterson, R.T., Link, B.A., Dowling, J.E. et al. Small molecule developmental screens reveal the logic and timing of vertebrate development Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 12965-12969
|
[53] |
Peterson, R.T., Shaw, S.Y., Peterson, T.A. et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation Nat. Biotechnol., 22 (2004),pp. 595-599
|
[54] |
Pruvot, B., Jacquel, A., Droin, N. et al. Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy Haematologica, 96 (2011),pp. 612-616
|
[55] |
Renshaw, S.A., Loynes, C.A., Trushell, D.M. et al. A transgenic zebrafish model of neutrophilic inflammation Blood, 108 (2006),pp. 3976-3978
|
[56] |
Rhodes, J., Hagen, A., Hsu, K. et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish Dev. Cell, 8 (2005),pp. 97-108
|
[57] |
Ridges, S., Heaton, W.L., Joshi, D. et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia Blood, 119 (2012),pp. 5621-5631
|
[58] |
Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
|
[59] |
Schoenebeck, J.J., Keegan, B.R., Yelon, D. Vessel and blood specification override cardiac potential in anterior mesoderm Dev. Cell, 13 (2007),pp. 254-267
|
[60] |
Serluca, F.C., Fishman, M.C. Cell lineage tracing in heart development Methods Cell Biol., 59 (1999),pp. 359-365
|
[61] |
Serluca, F.C., Fishman, M.C. Pre-pattern in the pronephric kidney field of zebrafish Development, 128 (2001),pp. 2233-2241
|
[62] |
Stainier, D.Y., Weinstein, B.M., , Zon, L.I. et al. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages Development, 121 (1995),pp. 3141-3150
|
[63] |
Su, F., Juarez, M.A., Cooke, C.L. et al. Differential regulation of primitive myelopoiesis in the zebrafish by Spi-1/Pu.1 and C/ebp1 Zebrafish, 4 (2007),pp. 187-199
|
[64] |
Sumanas, S., Gomez, G., Zhao, Y. et al. Interplay among Etsrp/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation Blood, 111 (2008),pp. 4500-4510
|
[65] |
Sumanas, S., Lin, S. Ets1-related protein is a key regulator of vasculogenesis in zebrafish PLoS Biol., 4 (2006),p. e10
|
[66] |
Thompson, M.A., Ransom, D.G., Pratt, S.J. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis Dev. Biol., 197 (1998),pp. 248-269
|
[67] |
Vogeli, K.M., Jin, S.W., Martin, G.R. et al. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula Nature, 443 (2006),pp. 337-339
|
[68] |
Ward, A.C., McPhee, D.O., Condron, M.M. et al. Blood, 102 (2003),pp. 3238-3240
|
[69] |
Warga, R.M., Kane, D.A., Ho, R.K. Fate mapping embryonic blood in zebrafish: multi- and unipotential lineages are segregated at gastrulation Dev. Cell, 16 (2009),pp. 744-755
|
[70] |
Wei, W., Wen, L., Huang, P. et al. Gfi1.1 regulates hematopoietic lineage differentiation during zebrafish embryogenesis Cell Res., 18 (2008),pp. 677-685
|
[71] |
Wienholds, E., Koudijs, M.J., van Eeden, F.J. et al. The microRNA-producing enzyme Dicer1 is essential for zebrafish development Nat. Genet., 35 (2003),pp. 217-218
|
[72] |
Wienholds, E., Schulte-Merker, S., Walderich, B. et al. Science, 297 (2002),pp. 99-102
|
[73] |
Willett, C.E., Cortes, A., Zuasti, A. et al. Early hematopoiesis and developing lymphoid organs in the zebrafish Dev. Dyn., 214 (1999),pp. 323-336
|
[74] |
Wittamer, V., Bertrand, J.Y., Gutschow, P.W. et al. Characterization of the mononuclear phagocyte system in zebrafish Blood, 117 (2011),pp. 7126-7135
|
[75] |
Yeh, J.R., Munson, K.M., Chao, Y.L. et al. AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression Development, 135 (2008),pp. 401-410
|
[76] |
Yeh, J.R., Munson, K.M., Elagib, K.E. et al. Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation Nat. Chem. Biol., 5 (2009),pp. 236-243
|
[77] |
Yuan, H., Zhou, J., Deng, M. et al. Sumoylation of CCAAT/enhancer-binding protein alpha promotes the biased primitive hematopoiesis of zebrafish Blood, 117 (2011),pp. 7014-7020
|
[78] |
Zakrzewska, A., Cui, C., Stockhammer, O.W. et al. Macrophage-specific gene functions in Spi1-directed innate immunity Blood, 116 (2010),pp. e1-e11
|
[79] |
Zhang, Y., Bai, X.T., Zhu, K.Y. et al. J. Immunol., 181 (2008),pp. 2155-2164
|
[80] |
Zhuravleva, J., Paggetti, J., Martin, L. et al. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish Br. J. Haematol., 143 (2008),pp. 378-382
|