[1] |
Asano, K., Yamasaki, M., Takuno, S. et al. Artificial selection for a green revolution gene during japonica rice domestication Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 11034-11039
|
[2] |
Ashikari, M., Matsuoka, M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding Trends Plant Sci., 11 (2006),pp. 344-350
|
[3] |
Ashikari, M., Sakakibara, H., Lin, S. et al. Cytokinin oxidase regulates rice grain production Science, 309 (2005),pp. 741-745
|
[4] |
Atwell, S., Huang, Y.S., Vilhjalmsson, B.J. et al. Nature, 465 (2010),pp. 627-631
|
[5] |
Broman, K.W., Wu, H., Sen, S. et al. R/qtl: QTL mapping in experimental crosses Bioinformatics, 19 (2003),pp. 889-890
|
[6] |
Chen, L., Zhao, Z., Liu, X. et al. Mol. Breeding, 27 (2010),pp. 247-258
|
[7] |
Ding, X., Li, X., Xiong, L. Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice Theor. Appl. Genet., 123 (2011),pp. 815-826
|
[8] |
Fan, C., Xing, Y., Mao, H. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein Theor. Appl. Genet., 112 (2006),pp. 1164-1171
|
[9] |
George, A.
|
[10] |
Gore, M.A., Chia, J.M., Elshire, R.J. et al. A first-generation haplotype map of maize Science, 326 (2009),pp. 1115-1117
|
[11] |
Hayashi, K., Yoshida, H., Ashikawa, I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes Theor. Appl. Genet., 113 (2006),pp. 251-260
|
[12] |
Huang, N., Angeles, E.R., Domingo, J. et al. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR Theor. Appl. Genet., 95 (1997),pp. 313-320
|
[13] |
Huang, X.H., Feng, Q., Qian, Q. et al. High-throughput genotyping by whole-genome resequencing Genome Res., 19 (2009),pp. 1068-1076
|
[14] |
Huang, X., Qian, Q., Liu, Z. et al. Natural variation at the DEP1 locus enhances grain yield in rice Nat. Genet., 41 (2009),pp. 494-497
|
[15] |
Huang, X.H., Wei, X.H., Sang, T. et al. Genome-wide association studies of 14 agronomic traits in rice landraces Nat. Genet., 42 (2010),pp. 961-976
|
[16] |
Kurakawa, T., Ueda, N., Maekawa, M. et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme Nature, 445 (2007),pp. 652-655
|
[17] |
Lai, X.H., Hinga, M.E., Lobos, K.B. et al. Theor. Appl. Genet., 107 (2003),pp. 479-493
|
[18] |
Lander, E.S., Green, P., Abrahamson, J. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations Genomics, 93 (2009),p. 398
|
[19] |
Li, J.X., Yu, S.B., Xu, C.G. et al. Theor. Appl. Genet., 101 (2000),pp. 248-254
|
[20] |
Li, J., Thomson, M., McCouch, S.R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3 Genetics, 168 (2004),pp. 2187-2195
|
[21] |
Li, Y., Fan, C., Xing, Y. et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice Nat. Genet., 43 (2011),pp. 1266-1269
|
[22] |
Lin, H.X., Qian, H.R., Zhuang, J.Y. et al. Theor. Appl. Genet., 92 (1996),pp. 920-927
|
[23] |
Lin, X.H., Xu, C.G., Zhang, Q.F. Improvement of bacterial blight resistance of ‘Minghui 63’, an elite Restorer line of hybrid rice, by molecular marker-assisted selection Crop Sci., 40 (2000),pp. 239-244
|
[24] |
Lu, C., Shen, L., Tan, Z. et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population Theor. Appl. Genet., 93 (1996),pp. 1211-1217
|
[25] |
Mao, H., Sun, S., Yao, J. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 19579-19584
|
[26] |
McCouch, S.R., Teytelman, L., Xu, Y. et al. DNA Res., 9 (2002),pp. 199-207
|
[27] |
Nordborg, M., Weigel, D. Next-generation genetics in plants Nature, 456 (2008),pp. 720-723
|
[28] |
Redona, E.D., Mackill, D.J. Quantitative trait locus analysis for rice panicle and grain characteristics Theor. Appl. Genet., 96 (1998),pp. 957-963
|
[29] |
Ribaut, J.M., Betran, J. Single large-scale marker-assisted selection (SLS-MAS) Mol. Breeding, 5 (1999),pp. 531-541
|
[30] |
Rogers, S.O., Bandich, A.J.
|
[31] |
Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M. et al. Green revolution: a mutant gibberellin-synthesis gene in rice Nature, 416 (2002),pp. 701-702
|
[32] |
Shomura, A., Izawa, T., Ebana, K. et al. Deletion in a gene associated with grain size increased yields during rice domestication Nat. Genet., 40 (2008),pp. 1023-1028
|
[33] |
Song, X.J., Huang, W., Shi, M. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase Nat. Genet., 39 (2007),pp. 623-630
|
[34] |
Venkateswarlu, B., Visperas, R.M. Source-sink relationships in crop plants Int. Rice Research Paper Series, 125 (1987),pp. 1-19
|
[35] |
Wang, S., Basten, C.J., Zeng, Z.B.
|
[36] |
Wang, L., Wang, A., Huang, X. et al. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines Theor. Appl. Genet., 122 (2010),pp. 327-340
|
[37] |
Xu, J., Zhao, Q., Du, P. et al. BMC Genomics, 11 (2010),p. 656
|
[38] |
Zhang, Y.M., Xu, S. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny Genetics, 166 (2004),pp. 1981-1993
|
[39] |
Zhou, P.Z., Tan, Y.T., He, Y.H. et al. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection Theor. Appl. Genet., 106 (2003),pp. 326-331
|