[1] |
Baradari, V., Huether, A., Hopfner, M. et al. Antiproliferative and proapoptotic effects of histone deacetylase inhibitors on gastrointestinal neuroendocrine tumor cells Endocr. Relat. Cancer, 13 (2006),pp. 1237-1250
|
[2] |
Briscoe, C.P., Tadayyon, M., Andrews, J.L. et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids J. Biol. Chem., 278 (2003),pp. 11303-11311
|
[3] |
Brown, A.J., Goldsworthy, S.M., Barnes, A.A. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids J. Biol. Chem., 278 (2003),pp. 11312-11319
|
[4] |
Cao, X.X., Mohuiddin, I., Ece, F. et al. Am. J. Respir. Cell Mol. Biol., 25 (2001),pp. 562-568
|
[5] |
Chen, J.S., Faller, D.V., Spanjaard, R.A. Short-chain fatty acid inhibitors of histone deacetylases: promising anticancer therapeutics? Curr. Cancer Drug Targets, 3 (2003),pp. 219-236
|
[6] |
Conley, B.A., Egorin, M.J., Tait, N. et al. Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors Clin. Cancer Res., 4 (1998),pp. 629-634
|
[7] |
Covington, D.K., Briscoe, C.A., Brown, A.J. et al. The G-protein-coupled receptor 40 family (GPR40-GPR43) and its role in nutrient sensing Biochem. Soc. Trans., 34 (2006),pp. 770-773
|
[8] |
Davie, J.R. Inhibition of histone deacetylase activity by butyrate J. Nutr., 133 (2003),pp. 2485S-2493S
|
[9] |
Dobbins, R.L., Chester, M.W., Daniels, M.B. et al. Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans Diabetes, 47 (1998),pp. 1613-1618
|
[10] |
Duan, H., Heckman, C.A., Boxer, L.M. Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas Mol. Cell. Biol., 25 (2005),pp. 1608-1619
|
[11] |
Glozak, M.A., Seto, E. Histone deacetylases and cancer Oncogene, 26 (2007),pp. 5420-5432
|
[12] |
Hinnebusch, B.F., Meng, S., Wu, J.T. et al. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation J. Nutr., 132 (2002),pp. 1012-1017
|
[13] |
Itoh, Y., Kawamata, Y., Harada, M. et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40 Nature, 422 (2003),pp. 173-176
|
[14] |
Johnstone, R.W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer Nat. Rev. Drug Discov., 1 (2002),pp. 287-299
|
[15] |
Kimura, I., Inoue, D., Maeda, T. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 8030-8035
|
[16] |
Kimura, M., Mizukami, Y., Miura, T. et al. J. Biol. Chem., 276 (2001),pp. 26453-26460
|
[17] |
Kotarsky, K., Nilsson, N.E., Flodgren, E. et al. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs Biochem. Biophys. Res. Commun., 301 (2003),pp. 406-410
|
[18] |
Kramer, O.H., Gottlicher, M., Heinzel, T. Histone deacetylase as a therapeutic target Trends Endocrinol. Metab., 12 (2001),pp. 294-300
|
[19] |
Kuroiwa-Trzmielina, J., de Conti, A., Scolastici, C. et al. Chemoprevention of rat hepatocarcinogenesis with histone deacetylase inhibitors: efficacy of tributyrin, a butyric acid prodrug Int. J. Cancer, 124 (2009),pp. 2520-2527
|
[20] |
Le Poul, E., Loison, C., Struyf, S. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation J. Biol. Chem., 278 (2003),pp. 25481-25489
|
[21] |
Li, R.W., Li, C. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells BMC Genomics, 7 (2006),p. 234
|
[22] |
Marks, P., Rifkind, R.A., Richon, V.M. et al. Histone deacetylases and cancer: causes and therapies Nat. Rev. Cancer, 1 (2001),pp. 194-202
|
[23] |
Milligan, G., Stoddart, L.A., Brown, A.J. G protein-coupled receptors for free fatty acids Cell Signal., 18 (2006),pp. 1360-1365
|
[24] |
Mohana Kumar, B., Song, H.J., Cho, S.K. et al. Effect of histone acetylation modification with sodium butyrate, a histone deacetylase inhibitor, on cell cycle, apoptosis, ploidy and gene expression in porcine fetal fibroblasts J. Reprod. Dev., 53 (2007),pp. 903-913
|
[25] |
Muhlethaler-Mottet, A., Meier, R., Flahaut, M. et al. Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells Mol. Cancer, 7 (2008),p. 55
|
[26] |
Nielsen, S., Jorgensen, J.O., Hartmund, T. et al. Effects of lowering circulating free fatty acid levels on protein metabolism in adult growth hormone deficient patients Growth Horm. IGF Res., 12 (2002),pp. 425-433
|
[27] |
Nolan, B., Duffy, A., Paquin, L. et al. Mitogen-activated protein kinases signal inhibition of apoptosis in lipopolysaccharide-stimulated neutrophils Surgery, 126 (1999),pp. 406-412
|
[28] |
Ocker, M., Schneider-Stock, R. Int. J. Biochem. Cell Biol., 39 (2007),pp. 1367-1374
|
[29] |
Peters, S.G., Pomare, E.W., Fisher, C.A. Portal and peripheral blood short chain fatty acid concentrations after caecal lactulose instillation at surgery Gut, 33 (1992),pp. 1249-1252
|
[30] |
Rosato, R.R., Almenara, J.A., Dai, Y. et al. Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells Mol. Cancer Ther., 2 (2003),pp. 1273-1284
|
[31] |
Samuel, B.S., Shaito, A., Motoike, T. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41 Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 16767-16772
|
[32] |
Santini, V., Gozzini, A., Ferrari, G. Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application Curr. Drug Metab., 8 (2007),pp. 383-393
|
[33] |
Siavoshian, S., Segain, J.P., Kornprobst, M. et al. Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression Gut, 46 (2000),pp. 507-514
|
[34] |
Stoddart, L.A., Smith, N.J., Milligan, G. International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions Pharmacol. Rev., 60 (2008),pp. 405-417
|
[35] |
Takai, N., Desmond, J.C., Kumagai, T. et al. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells Clin. Cancer Res., 10 (2004),pp. 1141-1149
|
[36] |
Tazoe, H., Otomo, Y., Kaji, I. et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions J. Physiol. Pharmacol., 59 (2008),pp. 251-262
|
[37] |
Tazoe, H., Otomo, Y., Karaki, S. et al. Expression of short-chain fatty acid receptor GPR41 in the human colon Biomed. Res., 30 (2009),pp. 149-156
|
[38] |
Topping, D.L., Clifton, P.M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides Physiol. Rev., 81 (2001),pp. 1031-1064
|
[39] |
von Engelhardt, W., Bartels, J., Kirschberger, S. et al. Role of short-chain fatty acids in the hind gut Vet. Q, 20 (1998),pp. S52-S59
|
[40] |
Xiong, Y., Miyamoto, N., Shibata, K. et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41 Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 1045-1050
|
[41] |
Xu, W.S., Parmigiani, R.B., Marks, P.A. Histone deacetylase inhibitors: molecular mechanisms of action Oncogene, 26 (2007),pp. 5541-5552
|
[42] |
Yonezawa, T., Kobayashi, Y., Obara, Y. Cell Signal., 19 (2007),pp. 185-193
|
[43] |
Yoo, C.B., Jones, P.A. Epigenetic therapy of cancer: past, present and future Nat. Rev. Drug Discov., 5 (2006),pp. 37-50
|