5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 6
Jun.  2012
Turn off MathJax
Article Contents

Retake the Center Stage – New Development of Rat Genetics

doi: 10.1016/j.jgg.2012.05.003
More Information
  • Corresponding author: E-mail address: chenjian.li@mssm.edu (Chenjian Li)
  • Received Date: 2012-03-25
  • Accepted Date: 2012-05-02
  • Rev Recd Date: 2012-05-02
  • Available Online: 2012-05-12
  • Publish Date: 2012-06-20
  • The rat is a powerful model for the study of human physiology and diseases, and is preferred by physiologists, neuroscientists and toxicologists. However, the lack of robust genetic modification tools has severely limited the generation of rat genetic models over the last two decades. In the last few years, several gene-targeting strategies have been developed in rats using N-ethyl-N-nitrosourea (ENU), transposons, zinc-finger nucleases (ZFNs), bacterial artificial chromosome (BAC) mediated transgenesis, and recently established rat embryonic stem (ES) cells. The development and improvement of these approaches to genetic manipulation have created a bright future for the use of genetic rat models in investigations of gene function and human diseases. Here, we summarize the strategies used for rat genetic manipulation in current research. We also discuss BAC transgenesis as a potential tool in rat transgenic models.
  • loading
  • [1]
    Alam, M., Mayerhofer, A., Schmidt, W.J. The neurobehavioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by L-DOPA Behav. Brain Res., 151 (2004),pp. 117-124
    [2]
    Augustin, M., Sedlmeier, R., Peters, T. et al. Efficient and fast targeted production of murine models based on ENU mutagenesis Mamm. Genome, 16 (2005),pp. 405-413
    [3]
    Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
    [4]
    Bogdanove, A.J., Schornack, S., Lahaye, T. TAL effectors: finding plant genes for disease and defense Curr. Opin. Plant Biol., 13 (2010),pp. 394-401
    [5]
    Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
    [6]
    Buehr, M., Meek, S., Blair, K. et al. Capture of authentic embryonic stem cells from rat blastocysts Cell, 135 (2008),pp. 1287-1298
    [7]
    Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [8]
    Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
    [9]
    Chu, X., Zhang, Z., Yabut, J. et al. Characterization of multidrug resistance 1a/P-glycoprotein knockout rats generated by zinc finger nucleases Mol. Pharmacol., 81 (2012),pp. 220-227
    [10]
    Cordes, S.P. Microbiol. Mol. Biol. Rev., 69 (2005),pp. 426-439
    [11]
    Cui, X., Ji, D., Fisher, D.A. et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases Nat. Biotechnol., 29 (2011),pp. 64-67
    [12]
    Ding, S., Wu, X., Li, G. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice Cell, 122 (2005),pp. 473-483
    [13]
    Evans, M.J., Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos Nature, 292 (1981),pp. 154-156
    [14]
    Feng, Q., Moran, J.V., , Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition Cell, 87 (1996),pp. 905-916
    [15]
    Geurts, A.M., Cost, G.J., Freyvert, Y. et al. Science, 325 (2009),p. 433
    [16]
    Geurts, A.M., Cost, G.J., Remy, S. et al. Generation of gene-specific mutated rats using zinc-finger nucleases Methods Mol. Biol., 597 (2010),pp. 211-225
    [17]
    Geurts, A.M., Moreno, C. Zinc-finger nucleases: new strategies to target the rat genome Clin. Sci. (Lond.), 119 (2010),pp. 303-311
    [18]
    Gong, S., Yang, X.W., Li, C. et al. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kγ origin of replication Genome Res., 12 (2002),pp. 1992-1998
    [19]
    Goto, Y., Peachey, N.S., Ripps, H. et al. Functional abnormalities in transgenic mice expressing a mutant rhodopsin gene Invest. Ophthalmol. Vis. Sci., 36 (1995),pp. 62-71
    [20]
    Hammer, R.E., Maika, S.D., Richardson, J.A. et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders Cell, 63 (1990),pp. 1099-1112
    [21]
    Hockemeyer, D., Wang, H., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
    [22]
    Hodgson, J.G., Agopyan, N., Gutekunst, C.A. et al. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration Neuron, 23 (1999),pp. 181-192
    [23]
    Homberg, J.R., Mul, J.D., de Wit, E. et al. Complete knockout of the nociceptin/orphanin FQ receptor in the rat does not induce compensatory changes in μ, δ and κ opioid receptors Neuroscience, 163 (2009),pp. 308-315
    [24]
    Homberg, J.R., Olivier, J.D., Smits, B.M. et al. Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system Neuroscience, 146 (2007),pp. 1662-1676
    [25]
    Hong, J., He, H., Weiss, M.L. Derivation and characterization of embryonic stem cells lines derived from transgenic Fischer 344 and Dark Agouti rats Stem Cells Dev (2011)
    [26]
    Huang, G., Ashton, C., Kumbhani, D.S. et al. Genetic manipulations in the rat: progress and prospects Curr. Opin. Nephrol. Hypertens., 20 (2011),pp. 391-399
    [27]
    Huang, G., Tong, C., Kumbhani, D.S. et al. Beyond knockout rats: new insights into finer genome manipulation in rats Cell Cycle, 10 (2011),pp. 1059-1066
    [28]
    Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
    [29]
    Ivics, Z., Izsvak, Z., Chapman, K.M. et al. Sleeping Beauty transposon mutagenesis of the rat genome in spermatogonial stem cells Methods, 53 (2011),pp. 356-365
    [30]
    Ivics, Z., Izsvak, Z., Medrano, G. et al. Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells Nat. Protoc., 6 (2011),pp. 1521-1535
    [31]
    Izsvák, Z., Frohlich, J., Grabundzija, I. et al. Generating knockout rats by transposon mutagenesis in spermatogonial stem cells Nat. Methods, 7 (2010),pp. 443-445
    [32]
    Jacob, H.J., Lazar, J., Dwinell, M.R. et al. Gene targeting in the rat: advances and opportunities Trends Genet., 26 (2010),pp. 510-518
    [33]
    Kaufman, C.D., Izsvak, Z., Katzer, A. et al. Frog Prince transposon-based RNAi vectors mediate efficient gene knockdown in human cells J. RNAi Gene Silencing, 1 (2005),pp. 97-104
    [34]
    Kawamata, M., Ochiya, T. Generation of genetically modified rats from embryonic stem cells Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 14223-14228
    [35]
    Kitada, K., Keng, V.W., Takeda, J. et al. Generating mutant rats using the Sleeping Beauty transposon system Methods, 49 (2009),pp. 236-242
    [36]
    Kuo, Y.M., Li, Z., Jiao, Y. et al. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated α-synuclein gene mutations precede central nervous system changes Hum. Mol. Genet., 19 (2010),pp. 1633-1650
    [37]
    Li, P., Tong, C., Mehrian-Shai, R. et al. Germline competent embryonic stem cells derived from rat blastocysts Cell, 135 (2008),pp. 1299-1310
    [38]
    Li, Y., Liu, W., Oo, T.F. et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease Nat. Neurosci., 12 (2009),pp. 826-828
    [39]
    Li, T., Huang, S., Jiang, W.Z. et al. Nucleic Acids Res., 39 (2011),pp. 359-372
    [40]
    Li, T., Huang, S., Zhao, X. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes Nucleic Acids Res., 39 (2011),pp. 6315-6325
    [41]
    Lieber, M.R. The mechanism of human nonhomologous DNA end joining J. Biol. Chem., 283 (2008),pp. 1-5
    [42]
    Lindsey, J.R.
    [43]
    Liu, G., Geurts, A.M., Yae, K. et al. Target-site preferences of Sleeping Beauty transposons J. Mol. Biol., 346 (2005),pp. 161-173
    [44]
    Liu, L., Orozco, I.J., Planel, E. et al. A transgenic rat that develops Alzheimer's disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment Neurobiol. Dis., 31 (2008),pp. 46-57
    [45]
    Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 5 (2012),pp. 209-215
    [46]
    Lo Bianco, C., Schneider, B.L., Bauer, M. et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson's disease Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 17510-17515
    [47]
    Machida, S., Kondo, M., Jamison, J.A. et al. P23H rhodopsin transgenic rat: correlation of retinal function with histopathology Invest. Ophthalmol. Vis. Sci., 41 (2000),pp. 3200-3209
    [48]
    Mahfouz, M.M., Li, L., Shamimuzzaman, M. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 2623-2628
    [49]
    Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells Proc. Natl. Acad. Sci. USA, 78 (1981),pp. 7634-7638
    [50]
    Mashimo, T., Takizawa, A., Voigt, B. et al. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases PLoS ONE, 5 (2010),p. e8870
    [51]
    Mátés, L., Chuah, M.K., Belay, E. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates Nat. Genet., 41 (2009),pp. 753-761
    [52]
    Mathias, S.L., Scott, A.F., , Boeke, J.D. et al. Reverse transcriptase encoded by a human transposable element Science, 254 (1991),pp. 1808-1810
    [53]
    Ménoret, S., Iscache, A.L., Tesson, L. et al. Characterization of immunoglobulin heavy chain knockout rats Eur. J. Immunol., 40 (2010),pp. 2932-2941
    [54]
    Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
    [55]
    Morbitzer, R., Elsaesser, J., Hausner, J. et al. Assembly of custom TALE-type DNA binding domains by modular cloning Nucleic Acids Res., 39 (2011),pp. 5790-5799
    [56]
    Moreno, C., Hoffman, M., Stodola, T.J. et al. Creation and characterization of a renin knockout rat Hypertension, 57 (2011),pp. 614-619
    [57]
    Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
    [58]
    Mussolino, C., Morbitzer, R., Lutge, F. et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity Nucleic Acids Res., 39 (2011),pp. 9283-9293
    [59]
    Pavletich, N.P., Pabo, C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A Science, 252 (1991),pp. 809-817
    [60]
    Philipeaux, J.M. Note sur l'extirpation des capsules surrenales chez les rats albinos C. R. Acad. Sci. (Paris), 43 (1856),p. 904
    [61]
    Porteus, M.H., Carroll, D. Gene targeting using zinc finger nucleases Nat. Biotechnol., 23 (2005),pp. 967-973
    [62]
    Reyon, D., Tsai, S.Q., Khayter, C. et al. FLASH assembly of TALENs for high-throughput genome editing Nat. Biotechnol, 30 (2012),pp. 460-465
    [63]
    Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
    [64]
    Scholze, H., Boch, J. TAL effectors are remote controls for gene activation Curr. Opin. Microbiol., 14 (2011),pp. 47-53
    [65]
    Shizuya, H., Birren, B., Kim, U.J. et al. Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 8794-8797
    [66]
    Smits, B.M., Mudde, J.B., van de Belt, J. et al. Generation of gene knockouts and mutant models in the laboratory rat by ENU-driven target-selected mutagenesis Pharmacogenet. Genomics, 16 (2006),pp. 159-169
    [67]
    Takeda, J., Keng, V.W., Horie, K. Germline mutagenesis mediated by Sleeping Beauty transposon system in mice Genome Biol., 8 (2007),p. S14
    [68]
    Tesson, L., Usal, C., Menoret, S. et al. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
    [69]
    Tong, C., Huang, G., Ashton, C. et al. Generating gene knockout rats by homologous recombination in embryonic stem cells Nat. Protoc., 6 (2011),pp. 827-844
    [70]
    Tong, C., Li, P., Wu, N.L. et al. Nature, 467 (2010),pp. 211-213
    [71]
    Ueda, S., Kawamata, M., Teratani, T. et al. Establishment of rat embryonic stem cells and making of chimera rats PLoS ONE, 3 (2008),p. e2800
    [72]
    Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
    [73]
    van Boxtel, R., Gould, M.N., Cuppen, E. et al. ENU mutagenesis to generate genetically modified rat models Methods Mol. Biol., 597 (2010),pp. 151-167
    [74]
    Vasireddy, V., Chavali, V.R., Joseph, V.T. et al. Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation PLoS ONE, 6 (2011),p. e21193
    [75]
    von Hörsten, S., Schmitt, I., Nguyen, H.P. et al. Transgenic rat model of Huntington's disease Hum. Mol. Genet., 12 (2003),pp. 617-624
    [76]
    Wheeler, V.C., Auerbach, W., White, J.K. et al. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse Hum. Mol. Genet., 8 (1999),pp. 115-122
    [77]
    Woltjen, K., Michael, I.P., Mohseni, P. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells Nature, 458 (2009),pp. 766-770
    [78]
    Wood, A.J., Lo, T.W., Zeitler, B. et al. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
    [79]
    Xu, Q., Shenoy, S., Li, C. Mouse models for LRRK2 Parkinson's disease. Parkinsonism Relat. Disord., 18 (2012),pp. S186-S189
    [80]
    Yamada, M., Iwatsubo, T., Mizuno, Y. et al. Overexpression of α-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease J. Neurochem., 91 (2004),pp. 451-461
    [81]
    Yamamoto, S., Nakata, M., Sasada, R. et al. Derivation of rat embryonic stem cells and generation of protease-activated receptor-2 knockout rats Transgenic Res (2011)
    [82]
    Yang, X.W., Model, P., Heintz, N. Nat. Biotechnol., 15 (1997),pp. 859-865
    [83]
    Ying, Q.L., Wray, J., Nichols, J. et al. The ground state of embryonic stem cell self-renewal Nature, 453 (2008),pp. 519-523
    [84]
    Zan, Y., Haag, J.D., Chen, K.S. et al. Production of knockout rats using ENU mutagenesis and a yeast-based screening assay Nat. Biotechnol., 21 (2003),pp. 645-651
    [85]
    Zhang, F., Cong, L., Lodato, S. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription Nat. Biotechnol., 29 (2011),pp. 149-153
    [86]
    Zhao, X., Lv, Z., Liu, L. et al. Derivation of embryonic stem cells from Brown Norway rats blastocysts J. Genet. Genomics, 37 (2010),pp. 467-473
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return