5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 5
May  2012
Turn off MathJax
Article Contents

Efficient and Specific Modifications of the Drosophila Genome by Means of an Easy TALEN Strategy

doi: 10.1016/j.jgg.2012.04.003
More Information
  • Corresponding author: E-mail address: wumin@bio.fsu.edu (Wu-Min Deng); E-mail address: rjiao@sun5.ibp.ac.cn (Renjie Jiao)
  • Received Date: 2012-03-03
  • Accepted Date: 2012-04-05
  • Rev Recd Date: 2012-04-02
  • Available Online: 2012-05-08
  • Publish Date: 2012-05-20
  • Technology development has always been one of the forces driving breakthroughs in biomedical research. Since the time of Thomas Morgan, Drosophilists have, step by step, developed powerful genetic tools for manipulating and functionally dissecting the Drosophila genome, but room for improving these technologies and developing new techniques is still large, especially today as biologists start to study systematically the functional genomics of different model organisms, including humans, in a high-throughput manner. Here, we report, for the first time inDrosophila, a rapid, easy, and highly specific method for modifying the Drosophila genome at a very high efficiency by means of an improved transcription activator-like effector nuclease (TALEN) strategy. We took advantage of the very recently developed “unit assembly” strategy to assemble two pairs of specific TALENs designed to modify the yellow gene (on the sex chromosome) and a novel autosomal gene. The mRNAs of TALENs were subsequently injected into Drosophila embryos. From 31.2% of the injected F0 fertile flies, we detected inheritable modification involving the yellow gene. The entire process from construction of specific TALENs to detection of inheritable modifications can be accomplished within one month. The potential applications of this TALEN-mediated genome modification method in Drosophila are discussed.
  • loading
  • [1]
    Beumer, K., Bhattacharyya, G., Bibikova, M. et al. Genetics, 172 (2006),pp. 2391-2403
    [2]
    Beumer, K.J., Trautman, J.K., Bozas, A. et al. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 19821-19826
    [3]
    Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
    [4]
    Bischof, J., Maeda, R.K., Hediger, M. et al. Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 3312-3317
    [5]
    Boch, J., Bonas, U. Annu. Rev. Phytopathol., 48 (2010),pp. 419-436
    [6]
    Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-Type III effectors Science, 326 (2009),pp. 1509-1512
    [7]
    Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
    [8]
    Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [9]
    Chen, Y., Dui, W., Yu, Z. et al. Protein Cell, 1 (2010),pp. 478-490
    [10]
    Daniels, S.B., McCarron, M., Love, C. et al. Genetics, 109 (1985),pp. 95-117
    [11]
    DeFrancesco, L. Move over ZFNs Nat. Biotechnol., 29 (2011),pp. 681-684
    [12]
    Deng, D., Yan, C., Pan, X. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors Science, 335 (2012),pp. 720-723
    [13]
    Dreier, B., Beerli, R.R., Segal, D.J. et al. Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors J. Biol. Chem., 276 (2001),pp. 29466-29478
    [14]
    Dreier, B., Fuller, R.P., Segal, D.J. et al. Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors J. Biol. Chem., 280 (2005),pp. 35588-35597
    [15]
    Du, G.P., Liu, X.A., Chen, X.P. et al. Mol. Biol. Cell, 21 (2010),pp. 2128-2137
    [16]
    Gao, G., McMahon, C., Chen, J. et al. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 13999-14004
    [17]
    Hockemeyer, D., Wang, H.Y., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
    [18]
    Huang, H., Jiao, R.J. Roles of chromatin assembly factor 1 in the epigenetic control of chromatin plasticity Sci. China Life Sci., 55 (2012),pp. 15-19
    [19]
    Huang, H., Yu, Z.S., Zhang, S.Q. et al. J. Cell Sci., 123 (2010),pp. 2853-2861
    [20]
    Huang, J., Zhou, W.K., Dong, W. et al. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 8284-8289
    [21]
    Huang, P., Xiao, A., Zhou, M.G. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
    [22]
    Kim, J.S., Lee, H.J., Carroll, D. Genome editing with modularly assembled zinc-finger nucleases Nat. Methods, 7 (2010),p. 91
    [23]
    Liu, J.Y., Wu, Q.H., He, D.L. et al. J. Genet. Genomics, 38 (2011),pp. 225-234
    [24]
    Maeder, M.L., Thibodeau-Beganny, S., Osiak, A. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification Mol. Cell, 31 (2008),pp. 294-301
    [25]
    Mak, A.N., Bradley, P., Cernadas, R.A. et al. The crystal structure of TAL effector PthXo1 bound to its DNA target Science, 335 (2012),pp. 716-719
    [26]
    Markstein, M., Pitsouli, C., Villalta, C. et al. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes Nat. Genet., 40 (2008),pp. 476-483
    [27]
    Miller, J.C., Tan, S.Y., Qiao, G.J. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
    [28]
    Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
    [29]
    Pearson, H. Protein engineering: the fate of fingers Nature, 455 (2008),pp. 160-164
    [30]
    Ramirez, C.L., Foley, J.E., Wright, D.A. et al. Unexpected failure rates for modular assembly of engineered zinc fingers Nat. Methods, 5 (2008),pp. 374-375
    [31]
    Rong, Y.S., Golic, K.G. Science, 288 (2000),pp. 2013-2018
    [32]
    Rong, Y.S., Golic, K.G. Genetics, 157 (2001),pp. 1307-1312
    [33]
    Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
    [34]
    Schornack, S., Meyer, A., Romer, P. et al. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins J. Plant Physiol., 163 (2006),pp. 256-272
    [35]
    Segal, D.J., Dreier, B., Beerli, R.R. et al. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 2758-2763
    [36]
    Song, Y.J., He, F., Xie, G.Q. et al. Dev. Biol., 311 (2007),pp. 213-222
    [37]
    Tesson, L., Usal, C., Menoret, S. et al. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
    [38]
    Voelker, R.A., Greenleaf, A.L., Gyurkovics, H. et al. Genetics, 107 (1984),pp. 279-294
    [39]
    Wood, A.J., Lo, T.W., Zeitler, B. et al. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
    [40]
    Xu, Y.J., Lei, Z.Y., Huang, H. et al. PLoS ONE, 4 (2009),p. e6107
    [41]
    Yu, Z., Jiao, R.J. Front. Biol., 5 (2010),pp. 238-245
    [42]
    Zhang, F., Cong, L., Lodato, S. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription Nat. Biotechnol., 29 (2011),pp. 149-154
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return