[1] |
Beumer, K., Bhattacharyya, G., Bibikova, M. et al. Genetics, 172 (2006),pp. 2391-2403
|
[2] |
Beumer, K.J., Trautman, J.K., Bozas, A. et al. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 19821-19826
|
[3] |
Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
|
[4] |
Bischof, J., Maeda, R.K., Hediger, M. et al. Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 3312-3317
|
[5] |
Boch, J., Bonas, U. Annu. Rev. Phytopathol., 48 (2010),pp. 419-436
|
[6] |
Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-Type III effectors Science, 326 (2009),pp. 1509-1512
|
[7] |
Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
|
[8] |
Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
|
[9] |
Chen, Y., Dui, W., Yu, Z. et al. Protein Cell, 1 (2010),pp. 478-490
|
[10] |
Daniels, S.B., McCarron, M., Love, C. et al. Genetics, 109 (1985),pp. 95-117
|
[11] |
DeFrancesco, L. Move over ZFNs Nat. Biotechnol., 29 (2011),pp. 681-684
|
[12] |
Deng, D., Yan, C., Pan, X. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors Science, 335 (2012),pp. 720-723
|
[13] |
Dreier, B., Beerli, R.R., Segal, D.J. et al. Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors J. Biol. Chem., 276 (2001),pp. 29466-29478
|
[14] |
Dreier, B., Fuller, R.P., Segal, D.J. et al. Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors J. Biol. Chem., 280 (2005),pp. 35588-35597
|
[15] |
Du, G.P., Liu, X.A., Chen, X.P. et al. Mol. Biol. Cell, 21 (2010),pp. 2128-2137
|
[16] |
Gao, G., McMahon, C., Chen, J. et al. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 13999-14004
|
[17] |
Hockemeyer, D., Wang, H.Y., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
|
[18] |
Huang, H., Jiao, R.J. Roles of chromatin assembly factor 1 in the epigenetic control of chromatin plasticity Sci. China Life Sci., 55 (2012),pp. 15-19
|
[19] |
Huang, H., Yu, Z.S., Zhang, S.Q. et al. J. Cell Sci., 123 (2010),pp. 2853-2861
|
[20] |
Huang, J., Zhou, W.K., Dong, W. et al. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 8284-8289
|
[21] |
Huang, P., Xiao, A., Zhou, M.G. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
|
[22] |
Kim, J.S., Lee, H.J., Carroll, D. Genome editing with modularly assembled zinc-finger nucleases Nat. Methods, 7 (2010),p. 91
|
[23] |
Liu, J.Y., Wu, Q.H., He, D.L. et al. J. Genet. Genomics, 38 (2011),pp. 225-234
|
[24] |
Maeder, M.L., Thibodeau-Beganny, S., Osiak, A. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification Mol. Cell, 31 (2008),pp. 294-301
|
[25] |
Mak, A.N., Bradley, P., Cernadas, R.A. et al. The crystal structure of TAL effector PthXo1 bound to its DNA target Science, 335 (2012),pp. 716-719
|
[26] |
Markstein, M., Pitsouli, C., Villalta, C. et al. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes Nat. Genet., 40 (2008),pp. 476-483
|
[27] |
Miller, J.C., Tan, S.Y., Qiao, G.J. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
|
[28] |
Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
|
[29] |
Pearson, H. Protein engineering: the fate of fingers Nature, 455 (2008),pp. 160-164
|
[30] |
Ramirez, C.L., Foley, J.E., Wright, D.A. et al. Unexpected failure rates for modular assembly of engineered zinc fingers Nat. Methods, 5 (2008),pp. 374-375
|
[31] |
Rong, Y.S., Golic, K.G. Science, 288 (2000),pp. 2013-2018
|
[32] |
Rong, Y.S., Golic, K.G. Genetics, 157 (2001),pp. 1307-1312
|
[33] |
Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
|
[34] |
Schornack, S., Meyer, A., Romer, P. et al. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins J. Plant Physiol., 163 (2006),pp. 256-272
|
[35] |
Segal, D.J., Dreier, B., Beerli, R.R. et al. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 2758-2763
|
[36] |
Song, Y.J., He, F., Xie, G.Q. et al. Dev. Biol., 311 (2007),pp. 213-222
|
[37] |
Tesson, L., Usal, C., Menoret, S. et al. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
|
[38] |
Voelker, R.A., Greenleaf, A.L., Gyurkovics, H. et al. Genetics, 107 (1984),pp. 279-294
|
[39] |
Wood, A.J., Lo, T.W., Zeitler, B. et al. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
|
[40] |
Xu, Y.J., Lei, Z.Y., Huang, H. et al. PLoS ONE, 4 (2009),p. e6107
|
[41] |
Yu, Z., Jiao, R.J. Front. Biol., 5 (2010),pp. 238-245
|
[42] |
Zhang, F., Cong, L., Lodato, S. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription Nat. Biotechnol., 29 (2011),pp. 149-154
|