5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 3
Mar.  2012
Turn off MathJax
Article Contents

Current Advances in Epigenetic Modification and Alteration during Mammalian Ovarian Folliculogenesis

doi: 10.1016/j.jgg.2012.02.004
More Information
  • Corresponding author: E-mail address: owwa@njau.edu.cn (Zengxiang Pan); E-mail address: liuhonglin@njau.edu.cn (Honglin Liu)
  • Received Date: 2011-08-08
  • Accepted Date: 2012-02-10
  • Rev Recd Date: 2012-01-07
  • Available Online: 2012-02-21
  • Publish Date: 2012-03-20
  • During the growth and development of mammalian ovarian follicles, the activation and deactivation of mass genes are under the synergistic control of diverse modifiers through genetic and epigenetic events. Many factors regulate gene activity and functions through epigenetic modification without altering the DNA sequence, and the common mechanisms may include but are not limited to: DNA methylation, histone modifications (e.g., acetylation, deacetylation, phosphorylation, methylation, and ubiquitination), and RNA-associated silencing of gene expression by noncoding RNA. Over the past decade, substantial progress has been achieved in studies involving the epigenetic alterations during mammalian germ cell development. A number of candidate regulatory factors have been identified. This review focuses on the current available information of epigenetic alterations (e.g., DNA methylation, histone modification, noncoding-RNA-mediated regulation) during mammalian folliculogenesis and recounts when and how epigenetic patterns are differentially established, maintained, or altered in this process. Based on different types of epigenetic regulation, our review follows the temporal progression of events during ovarian folliculogenesis and describes the epigenetic changes and their contributions to germ cell–specific functions at each stage (i.e., primordial folliculogenesis (follicle formation), follicle maturation, and follicular atresia).
  • loading
  • [1]
    Ahn, S.H., Diaz, R.L., Grunstein, M. et al. Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10 Mol. Cell, 24 (2006),pp. 211-220
    [2]
    Akiyama, T., Nagata, M., Aoki, F. Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 7339-7344
    [3]
    Alford, C., Toloubeydokhti, T., Al-Katanani, Y. et al. The expression of microRNA (miRNA) mir-23a and 23b and their target gene, CYP19A1 (aromatase) in follicular cells obtained from women undergoing ART Fertil. Steril., 88 (2007),pp. S166-S167
    [4]
    Allegrucci, C., Thurston, A., Lucas, E. et al. Epigenetics and the germline Reproduction, 129 (2005),pp. 137-149
    [5]
    Ancelin, K., Lange, U.C., Hajkova, P. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells Nat. Cell Biol., 8 (2006),pp. 623-630
    [6]
    Andersen, A.A., Panning, B. Epigenetic gene regulation by noncoding RNAs Curr. Opin. Cell Biol., 15 (2003),pp. 281-289
    [7]
    Aravin, A., Gaidatzis, D., Pfeffer, S. et al. A novel class of small RNAs bind to MILI protein in mouse testes Nature, 442 (2006),pp. 203-207
    [8]
    Aravin, A.A., Hannon, G.J., Brennecke, J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race Science, 318 (2007),pp. 761-764
    [9]
    Aravin, A.A., Sachidanandam, R., Girard, A. et al. Developmentally regulated piRNA clusters implicate MILI in transposon control Science, 316 (2007),pp. 744-747
    [10]
    Baarends, W.M., Wassenaar, E., Van Der Laan, R. et al. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis Mol. Cell. Biol., 25 (2005),pp. 1041-1053
    [11]
    Baldridge, M.G., Stahl, R.L., Gerstenberger, S.L. et al. Modulation of ovarian follicle maturation in Long-Evans rats exposed to polychlorinated biphenyls in utero and lactationally Reprod. Toxicol., 17 (2003),pp. 567-573
    [12]
    Bao, S., Obata, Y., Carroll, J. et al. Epigenetic modifications necessary for normal development are established during oocyte growth in mice Biol. Reprod., 62 (2000),pp. 616-621
    [13]
    Bartolomei, M.S., Tilghman, S.M. Genomic imprinting in mammals Annu Rev Genet, 31 (1997),pp. 493-525
    [14]
    Berger, S.L. Histone modifications in transcriptional regulation Curr. Opin. Genet. Dev., 12 (2002),pp. 142-148
    [15]
    Biermann, K., Steger, K. Epigenetics in male germ cells J. Androl., 28 (2007),pp. 466-480
    [16]
    Bonnet, A., Dalbies-Tran, R., Sirard, M.A. Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals Reproduction, 135 (2008),pp. 119-128
    [17]
    Bui, H.T., Yamaoka, E., Miyano, T. Involvement of histone H3 (Ser10) phosphorylation in chromosome condensation without Cdc2 kinase and mitogen-activated protein kinase activation in pig oocytes Biol. Reprod., 70 (2004),pp. 1843-1851
    [18]
    Bui, H.T., Van Thuan, N., Kishigami, S. et al. Regulation of chromatin and chromosome morphology by histone H3 modifications in pig oocytes Reproduction, 133 (2007),pp. 371-382
    [19]
    Carmona-Gutierrez, D., Madeo, F. Yeast unravels epigenetic apoptosis control: deadly chat within a histone tail Mol. Cell, 24 (2006),pp. 167-169
    [20]
    Cecconi, S., Ciccarelli, C., Barberi, M. et al. Granulosa cell-oocyte interactions Eur. J. Obstet. Gynecol. Reprod. Biol., 115 (2004),pp. S19-S22
    [21]
    Chang, C.C., Nagy, Z.P., Abdelmassih, R. et al. Genome-wide epigenetic changes during oocyte growth Fertil. Steril., 82 (2004)
    [22]
    Clough, E., Moon, W., Wang, S. et al. Development, 134 (2007),pp. 157-165
    [23]
    Costa, F.F. Non-coding RNAs: new players in eukaryotic biology Gene, 357 (2005),pp. 83-94
    [24]
    Costa, F.F. Non-coding RNAs, epigenetics and complexity Gene, 410 (2008),pp. 9-17
    [25]
    Craig, J., Orisaka, M., Wang, H. et al. Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death Front. Biosci., 12 (2007),pp. 3628-3639
    [26]
    De La Fuente, R., Baumann, C., Fan, T. et al. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells Nat. Cell Biol., 8 (2006),pp. 1448-1454
    [27]
    Deng, W., Lin, H. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis Dev. Cell, 2 (2002),pp. 819-830
    [28]
    Endo, T., Naito, K., Aoki, F. et al. Mol. Reprod. Dev., 71 (2005),pp. 123-128
    [29]
    Fiedler, S.D., Carletti, M.Z., Hong, X. et al. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells Biol. Reprod., 79 (2008),pp. 1030-1037
    [30]
    Fischle, W., Wang, Y., Allis, C.D. Histone and chromatin cross-talk Curr. Opin. Cell Biol., 15 (2003),pp. 172-183
    [31]
    Fortune, J.E. The early stages of follicular development: activation of primordial follicles and growth of preantral follicles Anim. Reprod. Sci., 78 (2003),pp. 135-163
    [32]
    Geuns, E., De Rycke, M., Van Steirteghem, A. et al. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos Hum. Mol. Genet., 12 (2003),pp. 2873-2879
    [33]
    Girard, A., Sachidanandam, R., Hannon, G.J. et al. A germline-specific class of small RNAs binds mammalian Piwi proteins Nature, 442 (2006),pp. 199-202
    [34]
    Grivna, S.T., Beyret, E., Wang, Z. et al. A novel class of small RNAs in mouse spermatogenic cells Genes Dev., 20 (2006),pp. 1709-1714
    [35]
    Gu, L., Wang, Q., Wang, C.M. et al. Distribution and expression of phosphorylated histone H3 during porcine oocyte maturation Mol. Reprod. Dev., 75 (2008),pp. 143-149
    [36]
    Hajkova, P., Erhardt, S., Lane, N. et al. Epigenetic reprogramming in mouse primordial germ cells Mech. Dev., 117 (2002),pp. 15-23
    [37]
    Hajkova, P., Ancelin, K., Waldmann, T. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line Nature, 452 (2008),pp. 877-881
    [38]
    Hayashi, K., Yoshida, K., Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase Nature, 438 (2005),pp. 374-378
    [39]
    Hayashi, K., Chuva de Sousa Lopes, S.M., Kaneda, M. et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis PLoS ONE, 3 (2008),p. e1738
    [40]
    Hiura, H., Obata, Y., Komiyama, J. et al. Oocyte growth-dependent progression of maternal imprinting in mice Genes Cells, 11 (2006),pp. 353-361
    [41]
    Hou, J., Liu, L., Zhang, J. et al. Epigenetic modification of histone 3 at lysine 9 in sheep zygotes and its relationship with DNA methylation BMC Dev. Biol., 8 (2008),p. 60
    [42]
    Jelinkova, L., Kubelka, M. Neither aurora B activity nor histone H3 phosphorylation is essential for chromosome condensation during meiotic maturation of porcine oocytes Biol. Reprod., 74 (2006),pp. 905-912
    [43]
    Jenuwein, T., Allis, C.D. Translating the histone code Science, 293 (2001),pp. 1074-1079
    [44]
    Kageyama, S., Liu, H., Kaneko, N. et al. Alterations in epigenetic modifications during oocyte growth in mice Reproduction, 133 (2007),pp. 85-94
    [45]
    Kaipia, A., Hsueh, A.J.W. Regulation of ovarian follicle atresia Annu. Rev. Physiol., 59 (1997),pp. 349-363
    [46]
    Kaneda, M., Okano, M., Hata, K. et al. Nature, 429 (2004),pp. 900-903
    [47]
    Kato, M., Miura, A., Bender, J. et al. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis Curr. Biol., 13 (2003),pp. 421-426
    [48]
    Kato, Y., Kaneda, M., Hata, K. et al. Hum. Mol. Genet., 16 (2007),pp. 2272-2280
    [49]
    Kelly, T.L.J., Trasler, J.M. Reproductive epigenetics Clin. Genet., 65 (2004),pp. 247-260
    [50]
    Khan, A.U., Krishnamurthy, S. Histone modifications as key regulators of transcription Front. Biosci., 10 (2005),pp. 866-872
    [51]
    Kim, J.M., Liu, H., Tazaki, M. et al. Changes in histone acetylation during mouse oocyte meiosis J. Cell Biol., 162 (2003),pp. 37-46
    [52]
    Kim, Y.J., Ku, S.Y., Rosenwaks, Z. et al. Reprod. Sci., 17 (2010),pp. 1081-1089
    [53]
    Kimmins, S., Sassone-Corsi, P. Chromatin remodelling and epigenetic features of germ cells Nature, 434 (2005),pp. 583-589
    [54]
    Koerner, M.V., Pauler, F.M., Huang, R. et al. The function of non-coding RNAs in genomic imprinting Development, 136 (2009),pp. 1771-1783
    [55]
    La Salle, S., Mertineit, C., Taketo, T. et al. Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells Dev. Biol., 268 (2004),pp. 403-415
    [56]
    Lane, N., Dean, W., Erhardt, S. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse Genesis, 35 (2003),pp. 88-93
    [57]
    LaVoie, H.A. Epigenetic control of ovarian function: the emerging role of histone modifications Mol. Cell. Endocrinol., 243 (2005),pp. 12-18
    [58]
    Lees-Murdock, D.J., De Felici, M., Walsh, C.P. Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage Genomics, 82 (2003),pp. 230-237
    [59]
    Li, E., Beard, C., Jaenisch, R. Role for DNA methylation in genomic imprinting Nature, 366 (1993),pp. 362-365
    [60]
    Liu, H., Kim, J.M., Aoki, F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos Development, 131 (2004),pp. 2269-2280
    [61]
    Lonczak, A., Tao, X., Miller, K. et al. Dynamics of the human oocyte microRNA transcriptome during maturation Fertil. Steril., 92 (2009)
    [62]
    Lucifero, D., Mann, M.R., Bartolomei, M.S. et al. Gene-specific timing and epigenetic memory in oocyte imprinting Hum. Mol. Genet., 13 (2004),pp. 839-849
    [63]
    Maatouk, D.M., Kellam, L.D., Mann, M.R.W. et al. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages Development, 133 (2006),pp. 3411-3418
    [64]
    Marchal, R., Chicheportiche, A., Dutrillaux, B. et al. DNA methylation in mouse gametogenesis Cytogenet. Genome Res., 105 (2004),pp. 316-324
    [65]
    Mattick, J.S., Makunin, I.V. Non-coding RNA Hum. Mol. Genet., 15 (2006),pp. R17-R29
    [66]
    McGraw, S., Morin, G., Vigneault, C. et al. Investigation of MYST4 histone acetyltransferase and its involvement in mammalian gametogenesis BMC Dev. Biol., 7 (2007),p. 123
    [67]
    Mehlmann, L.M. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation Reproduction, 130 (2005),pp. 791-799
    [68]
    Monk, M., Boubelik, M., Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development Development, 99 (1987),p. 371
    [69]
    Morgan, H.D., Santos, F., Green, K. et al. Epigenetic reprogramming in mammals Hum. Mol. Genet., 14 (2005),pp. 47-58
    [70]
    Morita, Y., Tilly, J.L. Oocyte apoptosis: like sand through an hourglass Dev. Biol., 213 (1999),pp. 1-17
    [71]
    Obata, Y., Kono, T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth J. Biol. Chem., 277 (2002),pp. 5285-5289
    [72]
    Pépin, D., Vanderhyden, B.C., Picketts, D.J. et al. ISWI chromatin remodeling in ovarian somatic and germ cells: revenge of the NURFs Trends Endocrin. Met, 18 (2007),pp. 215-224
    [73]
    Petkov, S.G., Reh, W.A., Anderson, G.B. Methylation changes in porcine primordial germ cells Mol. Reprod. Dev., 76 (2008),pp. 22-30
    [74]
    Qiao, J., Chen, Y., Yan, L.Y. et al. Histone methylation pattern in human oocytes and developing embryos Fertil. Steril., 90 (2008)
    [75]
    Qiao, J., Chen, Y., Yan, L.Y. et al. Changes in histone methylation during human oocyte maturation and IVF- or ICSI-derived embryo development Fertil. Steril., 93 (2010),pp. 1628-1636
    [76]
    Racedo, S.E., Wrenzycki, C., Lepikhov, K. et al. Reprod. Fertil. Dev., 21 (2009),pp. 738-748
    [77]
    Reynaud, C., Bruno, C., Boullanger, P. et al. Monitoring of urinary excretion of modified nucleosides in cancer patients using a set of six monoclonal antibodies Cancer Lett., 61 (1992),pp. 255-262
    [78]
    Ro, S., Song, R., Park, C. et al. Cloning and expression profiling of small RNAs expressed in the mouse ovary RNA, 13 (2007),pp. 2366-2380
    [79]
    Rodrigues, P., Limback, D., McGinnis, L.K. et al. Oogenesis: prospects and challenges for the future J. Cell. Physiol., 216 (2008),pp. 355-365
    [80]
    Ruiz-Cortes, Z.T., Kimmins, S., Monaco, L. et al. Estrogen mediates phosphorylation of histone H3 in ovarian follicle and mammary epithelial tumor cells via the mitotic kinase, Aurora B Mol. Endocrinol, 19 (2005),pp. 2991-3000
    [81]
    Salvador, L.M., Park, Y., Cottom, J. et al. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells J. Biol. Chem., 276 (2001),pp. 40146-40150
    [82]
    Santenard, A., Torres-Padilla, M.E. Epigenetic reprogramming in mammalian reproduction: contribution from histone variants Epigenetics, 4 (2009),pp. 80-84
    [83]
    Santos, F., Dean, W. Epigenetic reprogramming during early development in mammals Reproduction, 127 (2004),pp. 643-651
    [84]
    Sato, S., Yoshimizu, T., Sato, E. et al. Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development Mol. Reprod. Dev., 65 (2003),pp. 41-50
    [85]
    Seki, Y., Hayashi, K., Itoh, K. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice Dev. Biol., 278 (2005),pp. 440-458
    [86]
    Seki, Y., Yamaji, M., Yabuta, Y. et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice Development, 134 (2007),pp. 2627-2638
    [87]
    Seneda, M.M., Godmann, M., Murphy, B.D. et al. Developmental regulation of histone H3 methylation at lysine 4 in the porcine ovary Reproduction, 135 (2008),pp. 829-838
    [88]
    Surani, M.A. Reprogramming of genome function through epigenetic inheritance Nature, 414 (2001),pp. 122-128
    [89]
    Swain, J.E., Ding, J., Brautigan, D.L. et al. Proper chromatin condensation and maintenance of histone H3 phosphorylation during mouse oocyte meiosis requires protein phosphatase activity Biol. Reprod., 76 (2007),pp. 628-638
    [90]
    Swales, A.K.E., Spears, N. Genomic imprinting and reproduction Reproduction, 130 (2005),pp. 389-399
    [91]
    Tachibana, M., Nozaki, M., Takeda, N. et al. Functional dynamics of H3K9 methylation during meiotic prophase progression EMBO J., 26 (2007),pp. 3346-3359
    [92]
    Tam, O.H., Aravin, A.A., Stein, P. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes Nature, 453 (2008),pp. 534-538
    [93]
    Tang, F., Kaneda, M., O'Carroll, D. et al. Maternal microRNAs are essential for mouse zygotic development Genes Dev., 21 (2007),pp. 644-650
    [94]
    Tang, L.S., Wang, Q., Xiong, B. et al. Dynamic changes in histone acetylation during sheep oocyte maturation J. Reprod. Dev., 53 (2007),pp. 555-561
    [95]
    Thomas, F.H., Vanderhyden, B.C. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth Reprod. Biol. Endocrinol., 4 (2006),p. 19
    [96]
    Toloubeydokhti, T., Alford, C., Al-Katanani, Y. et al. The expression of microRNA (miRNA), mir-17, mir-211 and mir-542 and their target genes, StAR, IL-1b and Cox2 in follicular cells derived from women undergoing ART Fertil. Steril., 88 (2007),pp. S165-S166
    [97]
    Vanselow, J., Furbass, R. Epigenetic control of folliculogenesis and luteinization Anim. Reprod. Sci., 7 (2010),pp. 134-139
    [98]
    Wang, Q., Yin, S., Ai, J.S. et al. Histone deacetylation is required for orderly meiosis Cell Cycle, 5 (2006),pp. 766-774
    [99]
    Wang, Z., Zang, C., Cui, K. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes Cell, 138 (2009),pp. 1019-1031
    [100]
    Watanabe, T., Takeda, A., Tsukiyama, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes Genes Dev., 20 (2006),pp. 1732-1743
    [101]
    Watanabe, T., Totoki, Y., Toyoda, A. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes Nature, 453 (2008),pp. 539-543
    [102]
    Yamazaki, Y., Mann, M.R.W., Lee, S.S. et al. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 12207-12212
    [103]
    Zhao, H., Rajkovic, A. MicroRNAs and mammalian ovarian development Semin. Reprod. Med., 26 (2008),pp. 461-468
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (105) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return