5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 4
Apr.  2012
Turn off MathJax
Article Contents

V-ATPase, ScNhx1p and Yeast Vacuole Fusion

doi: 10.1016/j.jgg.2012.02.001
More Information
  • Corresponding author: E-mail address: qiuqsh@lzu.edu.cn (Quan-Sheng Qiu)
  • Received Date: 2011-09-19
  • Accepted Date: 2012-02-02
  • Rev Recd Date: 2012-02-02
  • Available Online: 2012-02-10
  • Publish Date: 2012-04-20
  • Membrane fusion is the last step in trafficking pathways during which membrane vesicles fuse with target organelles to deliver cargos. It is a central cellular reaction that plays important roles in signal transduction, protein sorting and subcellular compartmentation. Recent progress in understanding the roles of ion transporters in vacuole fusion in yeast is summarized in this article. It is becoming increasingly evident that the vacuolar proton pump V-ATPase and vacuolar Na+/H+ antiporter ScNhx1p are key components of the vacuole fusion machinery in yeast. Yeast ScNhx1p regulates vacuole fusion by controlling the luminal pH. V-ATPases serve a dual role in vacuolar integrity in which they regulate both vacuole fusion and fission reactions in yeast. Fission defects are epistatic to fusion defects. Vacuole fission depends on the proton translocation activity of the V-ATPase; by contrast, the fusion reaction does not need the transport activity but requires the physical presence of the proton pump. V0, the membrane-integral sector of the V-ATPase, forms trans-complexes between the opposing vacuoles in the terminal phase of vacuole fusion where the V0 trans-complexes build a continuous proteolipid channel at the fusion site to mediate the bilayer fusion.
  • loading
  • [1]
    Ali, R., Brett, C.L., Mukherjee, S. et al. Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast J. Biol. Chem., 279 (2004),pp. 4498-4506
    [2]
    Baars, T.L., Petri, S., Peters, C. et al. Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium Mol. Biol. Cell, 18 (2007),pp. 3873-3882
    [3]
    Bayer, M.J., Reese, C., Buhler, S. et al. J. Cell Biol., 162 (2003),pp. 211-222
    [4]
    Bonangelino, C.J., Nau, J.J., Duex, J.E. et al. Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p J. Cell Biol., 156 (2002),pp. 1015-1028
    [5]
    Bowers, K., Levi, B.P., Patel, F.I. et al. Mol. Biol. Cell, 11 (2000),pp. 4277-4294
    [6]
    Brett, C.L., Tukaye, D.N., Mukherjee, S. et al. Mol. Biol. Cell, 16 (2005),pp. 1396-1405
    [7]
    Chernomordik, L.V., Zimmerberg, J. Bending membranes to the task: structural intermediates in bilayer fusion Curr. Opin. Struct. Biol., 5 (1995),pp. 541-547
    [8]
    Dröse, S., Altendorf, K. Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases J. Exp. Biol., 200 (1997),pp. 1-8
    [9]
    Fratti, R.A., Jun, Y., Merz, A.J. et al. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles J. Cell Biol., 167 (2004),pp. 1087-1098
    [10]
    Graham, L.A., Flannery, A.R., Stevens, T.H. Structure and assembly of the yeast V-ATPase J. Bioenerg. Biomembr., 35 (2003),pp. 301-312
    [11]
    Haas, A. A quantitative assay to measure homotypic vacuole fusion in vitro Meth. Cell Sci., 17 (1995),pp. 283-294
    [12]
    Haas, A., Conradt, B., Wickner, W. J. Cell Biol., 126 (1994),pp. 87-97
    [13]
    Jahn, R., Südhof, T.C. Membrane fusion and exocytosis Annu. Rev. Biochem., 68 (1999),pp. 863-911
    [14]
    Kallay, L.M., Brett, C.L., Tukaye, D.N. et al. J. Biol. Chem., 286 (2011),pp. 44067-44077
    [15]
    Kane, P.M., Parra, K.J. J. Exp. Biol., 203 (2000),pp. 81-87
    [16]
    Mayer, A. Intracellular membrane fusion: SNAREs only? Curr. Opin. Cell Biol., 11 (1999),pp. 447-452
    [17]
    Mayer, A., Wickner, W. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF) J. Cell Biol., 136 (1997),pp. 307-317
    [18]
    Mayer, A. Membrane fusion in eukaryotic cells Annu. Rev. Cell Dev. Biol., 18 (2002),pp. 289-314
    [19]
    Merz, A.J., Wickner, W.T. Resolution of organelle docking and fusion kinetics in a cell-free assay Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 11548-11553
    [20]
    Mitsui, K., Koshimura, Y., Yoshikawa, Y. et al. J. Biol. Chem., 286 (2011),pp. 37625-37638
    [21]
    Müller, O., Neumann, H., Bayer, M.J. et al. Role of the Vtc proteins in V-ATPase stability and membrane trafficking J. Cell Sci., 116 (2003),pp. 1107-1115
    [22]
    Müller, O., Bayer, M.J., Peters, C. et al. EMBO J., 21 (2002),pp. 259-269
    [23]
    Nass, R., Rao, R. J. Biol. Chem., 273 (1998),pp. 21054-21060
    [24]
    Ostrowicz, C.W., Meiringer, C.T., Ungermann, C. Yeast vacuole fusion: a model system for eukaryotic endomembrane dynamics Autophagy, 4 (2008),pp. 5-19
    [25]
    Peters, C., Bayer, M.J., Bühler, S. et al. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion Nature, 409 (2001),pp. 581-588
    [26]
    Qiu, Q.S., Fratti, R.A. J. Cell Sci., 123 (2010),pp. 3266-3275
    [27]
    Raymond, C.K., Howald-Stevenson, I., Vater, C.A. et al. Mol. Biol. Cell, 3 (1992),pp. 1389-1402
    [28]
    Schumacher, K., Krebs, M. The V-ATPase: small cargo, large effects Curr. Opin. Plant Biol., 13 (2010),pp. 724-730
    [29]
    Seeley, E.S., Kato, M., Margolis, N. et al. Genomic analysis of homotypic vacuole fusion Mol. Biol. Cell, 13 (2002),pp. 782-794
    [30]
    Starai, V.J., Thorngren, N., Fratti, R.A. et al. J. Biol. Chem., 280 (2005),pp. 16754-16762
    [31]
    Stevens, T.H., Forgac, M. Annu. Rev. Cell Dev. Biol., 13 (1997),pp. 779-808
    [32]
    Ungermann, C., Wickner, W., Xu, Z. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 11194-11199
    [33]
    Wada, Y., Anraku, Y. J. Biol. Chem., 267 (1992),pp. 18671-18675
    [34]
    Wada, Y., Sun-Wada, G.H., Tabata, H. et al. Vacuolar-type proton ATPase as regulator of membrane dynamics in multicellular organisms J. Bioenerg. Biomembr., 40 (2008),pp. 53-57
    [35]
    Wickner, W., Haas, A. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms Annu. Rev. Biochem., 69 (2000),pp. 247-275
    [36]
    Wickner, W. Yeast vacuoles and membrane fusion pathways EMBO J., 21 (2002),pp. 1241-1247
    [37]
    Wickner, W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles Annu. Rev. Cell Dev. Biol., 26 (2010),pp. 115-136
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (57) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return