5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 3
Mar.  2012
Turn off MathJax
Article Contents

Dicentric Chromosome Formation and Epigenetics of Centromere Formation in Plants

doi: 10.1016/j.jgg.2012.01.006
More Information
  • Corresponding author: E-mail address: BirchlerJ@Missouri.edu (James Birchler); E-mail address: fphan@genetics.ac.cn (Fangpu Han)
  • Received Date: 2011-11-02
  • Accepted Date: 2012-01-04
  • Rev Recd Date: 2011-12-28
  • Available Online: 2012-02-14
  • Publish Date: 2012-03-20
  • Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis. Each chromosome has one centromere region, which is essential for accurate division of the genetic material. Recently, chromosomes containing two centromere regions (called dicentric chromosomes) have been found in maize and wheat. Interestingly, some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated. Because such arrays maintain their typical structure for both active and inactive centromeres, the specification of centromere activity has an epigenetic component independent of the DNA sequence. Under some circumstances, the inactive centromeres may recover centromere function, which is called centromere reactivation. Recent studies have highlighted the important changes, such as DNA methylation and histone modification, that occur during centromere inactivation and reactivation.
  • loading
  • [1]
    Allshire, R.C., Karpen, G.H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet., 9 (2008),pp. 923-937
    [2]
    Alfenito, M.R., Birchler, J.A. Molecular characterization of a maize B-chromosome centric sequence Genetics, 135 (1993),pp. 589-597
    [3]
    Ananiev, E., Phillips, R.L., Rines, H. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 13073-13078
    [4]
    Birchler, J.A., Albert, P.S., Gao, Z. Stability of repeated sequence clusters in hybrids of maize as revealed by FISH Trop. Plant Biol., 1 (2008),pp. 34-39
    [5]
    Birchler, J.A., Gao, Z., Sharma, A. et al. Epigenetic aspects of centromere function in plants Curr. Opin. Plant Biol., 14 (2011),pp. 217-222
    [6]
    Birchler, J.A., Han, F. Maize centromeres: structure, function, epigenetics Ann. Rev. Genetics, 43 (2009),pp. 287-303
    [7]
    Carlson, W.R. Nondisjunction and isochromosome formation in the B chromosome of maize Chromosoma, 30 (1970),pp. 356-365
    [8]
    Carlson, W.R., Roseman, R.R. A new property of the maize B chromosome Genetics, 131 (1992),pp. 211-223
    [9]
    Dawe, R.K., Reed, L.M., Yu, H. et al. A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore Plant Cell, 11 (1999),pp. 1227-1238
    [10]
    Gao, Z., Fu, S., Dong, Q. et al. Inactivation of a centromere during the formation of a translocation in maize Chromosome Res., 19 (2011),pp. 755-761
    [11]
    Han, F., Lamb, J.C., Birchler, J.A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 3238-3243
    [12]
    Han, F., Lamb, J.C., Yu, W. et al. Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism Plant Cell, 19 (2007),pp. 524-533
    [13]
    Han, F., Gao, Z., Birchler, J.A. Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize Plant Cell, 21 (2009),pp. 1929-1939
    [14]
    Henikoff, S., Ahmad, K., Malik, H.S. The centromere paradox: stable inheritance with rapidly evolving DNA Science, 293 (2001),pp. 1098-1102
    [15]
    Houben, A., Demidov, D., Caperta, A.D. et al. Phosphorylation of histone H3 in plants—a dynamic affair Biochim. Biophys. Acta, 1769 (2007),pp. 308-315
    [16]
    Jiang, J., Nasuda, S., Dong, F. et al. A conserved repetitive DNA element located in the centromere of cereal chromosomes Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 14210-14213
    [17]
    Jin, W., Melo, J.R., Nagaki, K. et al. Maize centromeres: organization and functional adaptation in the genetic background of oat Plant Cell, 16 (2004),pp. 571-581
    [18]
    Jin, W., Lamb, J.C., Vega, J.M. et al. Molecular and functional dissection of the maize B chromosome centromere Plant Cell, 17 (2005),pp. 1412-1423
    [19]
    Lamb, J.C., Kato, A., Birchler, J.A. Sequences associated with A chromosome centromeres are present throughout the maize B chromosome Chromosoma, 113 (2005),pp. 337-349
    [20]
    Lermontova, I., Rutten, T., Schubert, I. Chromosoma, 120 (2011),pp. 633-640
    [21]
    Liu, Z., Yue, W., Li, D.Y. et al. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres Chromosoma, 117 (2008),pp. 445-456
    [22]
    Longley, A.E.
    [23]
    Kaszas, E., Birchler, J.A. Misdivision analysis of centromere structure in maize EMBO J., 15 (1996),pp. 5246-5255
    [24]
    Kaszas, E., Birchler, J.A. Meiotic transmission rates correlate with physical features of rearranged centromeres in maize Genetics, 150 (1998),pp. 1683-1692
    [25]
    Kato, A., Lamb, J.C., Birchler, J.A. Chromosome painting in maize using repetitive DNA sequences as probes for somatic chromosome identification Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 13554-13559
    [26]
    Koo, D.H., Han, F., Birchler, J.A. et al. Distinct DNA methylation patterns associated with active and inactive centromeres of maize B chromosome Genome Res., 21 (2011),pp. 908-914
    [27]
    Ma, J., Wing, R.A., Bennetzen, J.L. et al. Plant centromere organization: a dynamic structure with conserved functions Trends Genet., 23 (2007),pp. 134-139
    [28]
    McClintock, B. The behavior in successive nuclear divisions of a chromosome broken at meiosis Proc. Natl. Acad. Sci. USA, 25 (1939),pp. 405-416
    [29]
    McClintock, B. Genetics, 26 (1941),pp. 234-282
    [30]
    Morrison, J.W. A dicentric wheat chromosome in division Can. J. Bot., 32 (1954),pp. 491-502
    [31]
    Nagaki, K., Song, J., Stupar, R.M. et al. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres Genetics, 163 (2003),pp. 759-770
    [32]
    Nasuda, S., Hudakova, S., Schubert, I. et al. Stable barley chromosomes without centromeric repeats Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 9842-9847
    [33]
    Roman, H.L. Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize Genetics, 32 (1947),pp. 391-409
    [34]
    Roman, H.L. Directed fertilization in maize Proc. Natl. Acad. Sci. USA, 34 (1948),pp. 36-42
    [35]
    Schnable, P.S., Ware, D., Fulton, R.S. et al. The B73 maize genome: complexity, diversity, and dynamics Science, 326 (2009),pp. 1112-1115
    [36]
    Sears, E.R. Genetics, 31 (1946),pp. 229-230
    [37]
    Sears, E.R., Camara, A. A transmissible dicentric chromosome Genetics, 37 (1952),pp. 125-135
    [38]
    Sharma, A., Schneider, K.L., Presting, G.G. Sustained retrotransposition is mediated by nucleotide deletions and interelement recombinations Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 15470-15474
    [39]
    Sullivan, B.A., Willard, H.F. Stable dicentric X chromosomes with two functional centromeres Nat. Genet., 20 (1998),pp. 227-228
    [40]
    Topp, C.N., Okagaki, R.J., Melo, J.R. et al. Identification of a maize neocentromere in an oat-maize addition line Cytogenet. Genome Res., 124 (2009),pp. 228-238
    [41]
    Wolfgruber, T.K., Sharma, A., Schneider, K.L. et al. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals a major role for retrotransposons PLoS Genet., 5 (2009),p. e1000723
    [42]
    Zhang, W., Friebe, B., Gill, B.S. et al. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres Chromosoma, 119 (2010),pp. 553-563
    [43]
    Zheng, Y.-Z., Roseman, R.R., Carlson, W.R. Time course study of the chromosome-type breakage-fusion-bridge cycle in maize Genetics, 153 (1999),pp. 1435-1444
    [44]
    Zhong, C.X., Marshall, J.B., Topp, C. et al. Centromeric retroelements and satellites interact with maize kinetochore CENH3 Plant Cell, 14 (2002),pp. 2825-2836
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return