5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 1
Jan.  2012
Turn off MathJax
Article Contents

Isolation and Functional Characterisation of the Genes Encoding Δ8-Sphingolipid Desaturase from Brassica rapa

doi: 10.1016/j.jgg.2011.12.002
More Information
  • Corresponding author: E-mail address: zmhu@genetics.ac.cn (Zan-Min Hu)
  • Received Date: 2011-12-06
  • Accepted Date: 2011-12-23
  • Rev Recd Date: 2011-12-16
  • Available Online: 2011-12-30
  • Publish Date: 2012-01-20
  • Δ8-Sphingolipid desaturase is the key enzyme that catalyses desaturation at the C8 position of the long-chain base of sphingolipids in higher plants. There have been no previous studies on the genes encoding Δ8-sphingolipid desaturases in Brassica rapa. In this study, four genes encoding Δ8-sphingolipid desaturases from B. rapa were isolated and characterised. Phylogenetic analyses indicated that these genes could be divided into two groups: BrD8A, BrD8C and BrD8D in group I, and BrD8B in group II. The two groups of genes diverged before the separation of Arabidopsis and Brassica. Though the four genes shared a high sequence similarity, and their coding desaturases all located in endoplasmic reticulum, they exhibited distinct expression patterns. Heterologous expression in Saccharomyces cerevisiae revealed that BrD8A/B/C/D were functionally diverse Δ8-sphingolipid desaturases that catalyse different ratios of the two products 8(Z)- and 8(E)-C18-phytosphingenine. The aluminium tolerance of transgenic yeasts expressing BrD8A/B/C/D was enhanced compared with that of control cells. Expression of BrD8A in Arabidopsis changed the ratio of 8(Z):8(E)-C18-phytosphingenine in transgenic plants. The information reported here provides new insights into the biochemical functional diversity and evolutionary relationship of Δ8-sphingolipid desaturase in plants and lays a foundation for further investigation of the mechanism of 8(Z)- and 8(E)-C18-phytosphingenine biosynthesis.
  • loading
  • [1]
    Adams, K.L., Wendel, J.F. Novel patterns of gene expression in polyploidy plants Trends Genet., 21 (2005),pp. 539-543
    [2]
    Babula, D., Kaczmarek, M., Barakat, A. et al. Mol. Genet. Genomics, 268 (2003),pp. 656-665
    [3]
    Borner, G.H.H., Sherrier, D.J., Weimar, T. et al. Plant Physiol., 137 (2005),pp. 104-116
    [4]
    Chao, D.Y., Gable, K., Chen, M. et al. Plant Cell, 23 (2011),pp. 1061-1081
    [5]
    Chen, M., Markham, J.E., Dietrich, C.R. et al. Plant Cell, 20 (2008),pp. 1862-1878
    [6]
    Chen, X., Truksa, M., Snyder, C.L. et al. Plant Physiol., 155 (2011),pp. 851-865
    [7]
    Clough, S.J., Bent, A.F. Plant J., 16 (1998),pp. 735-743
    [8]
    Coursol, S., Fan, L.M., Stunff, H.L. et al. Nature, 423 (2003),pp. 651-654
    [9]
    da Silva, A.L.S., Sperling, P., Horst, W. et al. A possible role of sphingolipids in the aluminium resistance of yeast and maize J. Plant Physiol., 163 (2006),pp. 26-38
    [10]
    Doyle, J.J., Doyle, J.L. A rapid isolation procedure for small quantities of fresh leaf tissue Phytochem. Bull., 19 (1987),pp. 11-15
    [11]
    Elble, R. A simple and efficient procedure for transformation of yeasts Biotechniques, 13 (1992),pp. 18-20
    [12]
    Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap Evolution, 39 (1985),pp. 783-791
    [13]
    García-Maroto, F., Garrido-Cárdenas, J.A., Michaelson, L.V. et al. Plant Mol. Biol., 64 (2007),pp. 241-250
    [14]
    Hong, C.P., Kwon, S.J., Kim, J.S. et al. Int. J. Plant Genomics, 2008 (2008),pp. 582837-582846
    [15]
    Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants EMBO J., 6 (1987),pp. 3901-3907
    [16]
    Johnston, J.S., Pepper, A.E., Hall, A.E. et al. Evolution of genome size in Brassicaceae Ann. Bot, 95 (2005),pp. 229-235
    [17]
    Kawaguchi, M., Imai, H., Naoe, M. et al. Cerebrosides in grapevine leaves: distinct composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature Biosci. Biotechnol. Biochem., 64 (2000),pp. 1271-1273
    [18]
    Lagercrantz, U. Genetics, 150 (1998),pp. 1217-1228
    [19]
    Lan, T.H., DelMonte, T.A., Reischmann, K.P. et al. Genome Res., 10 (2000),pp. 776-788
    [20]
    Li, Z.G., Yin, W.B., Song, L.Y. et al. Genome, 46 (2011),pp. 202-211
    [21]
    Lukens, L., Zou, F., Lydiate, D. et al. Genetics, 164 (2003),pp. 359-372
    [22]
    Lynch, D.V., Dunn, T.M. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function New Phytol., 161 (2004),pp. 677-702
    [23]
    Markham, J.E., Li, J., Cahoon, E.B. et al. Separation and identification of major plant sphingolipid classes from leaves J. Biol. Chem., 281 (2006),pp. 22684-22694
    [24]
    Michaelson, L.V., Longman, A.J., Sayanova, O. et al. Biochem. Soc. Trans., 30 (2002),pp. 1073-1075
    [25]
    Michaelson, L.V., Zäuner, S., Markham, J.E. et al. Plant Physiol., 149 (2009),pp. 487-498
    [26]
    Moreno-Pérez, A.J., Martínez-Force, E., Garcés, R. et al. J. Plant Physiol., 168 (2011),pp. 831-839
    [27]
    Murashige, T., Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures Physiol. Plant, 15 (1962),pp. 473-497
    [28]
    Nelson, B.K., Cai, X., Nebenführ, A. Plant J., 51 (2007),pp. 1126-1136
    [29]
    Nishikawa, M., Hosokawa, K., Ishiguro, M. et al. Plant Cell Physiol., 49 (2008),pp. 1758-1763
    [30]
    Parkin, I.A.P., Sharpe, A.G., Lydiate, D.J. Genome, 46 (2003),pp. 291-303
    [31]
    Park, S., Yu, H.J., Mun, J.H. et al. Mol. Genet. Genomics, 283 (2010),pp. 135-145
    [32]
    Pruett, S.T., Bushnev, A., Hagedorn, K. et al. Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols J. Lipid Res., 49 (2008),pp. 1621-1639
    [33]
    Roudier, F., Schindelmann, G., DeSalle, R. et al. Plant Physiol., 130 (2002),pp. 538-548
    [34]
    Ryan, P.R., Liu, Q., Sperling, P. et al. Plant Physiol., 144 (2007),pp. 1968-1977
    [35]
    Shanklin, J., Whittle, E., Fox, B.G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase Biochemistry, 33 (1994),pp. 12787-12794
    [36]
    Song, L.Y., Lu, W.X., Hu, J. et al. J. Exp. Bot., 61 (2010),pp. 1827-1838
    [37]
    Sperling, P., Blume, A., Zähringer, U. et al. Biochem. Soc. Trans., 28 (2000),pp. 638-641
    [38]
    Sperling, P., Franke, S., Lüthje, S. et al. Are glucocerebrosides the predominant sphingolipids in plant plasma membranes? Plant Physiol. Biochem., 43 (2005),pp. 1031-1038
    [39]
    Sperling, P., Heinz, E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions Biochim. Biophys. Acta, 1632 (2003),pp. 1-15
    [40]
    Sperling, P., Libisch, B., Zähringer, U. et al. Arch. Biochem. Biophys., 388 (2001),pp. 293-298
    [41]
    Sperling, P., Zähringer, U., Heinz, E. A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein J. Biol. Chem., 273 (1998),pp. 28590-28596
    [42]
    Takahashi, Y., Berberich, T., Kanzaki, H. et al. Serine palmitoyltransferase, the first step enzyme in sphingolipid biosynthesis, is involved in nonhost resistance Mol. Plant Microbe Interact., 22 (2009),pp. 31-38
    [43]
    Tamura, K., Dudley, J., Nei, M. et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 Mol. Biol. Evol., 24 (2007),pp. 1596-1599
    [44]
    Teng, C., Dong, H., Shi, L. et al. Plant Physiol., 146 (2008),pp. 1322-1332
    [45]
    Town, C.D., Cheung, F., Maiti, R. et al. Plant Cell, 18 (2006),pp. 1348-1359
    [46]
    Umemura, K., Ogawa, N., Koga, J. et al. Elicitor activity of cerebroside, a sphingolipid elicitor, in cell suspension cultures of rice Plant Cell Physiol., 43 (2002),pp. 778-784
    [47]
    Wang, W., Yang, X., Tangchaiburana, S. et al. Plant Cell, 20 (2008),pp. 3163-3179
    [48]
    Xiong, T.C., Coursol, S., Grat, S. et al. Sphingolipid metabolites selectively elicit increases in nuclear calcium concentration in cell suspension cultures and in isolated nuclei of tobacco Cell Calcium, 43 (2008),pp. 29-37
    [49]
    Yang, T.J., Lai, K.N., Tai, P.Y. et al. J. Mol. Evol., 48 (1999),pp. 597-604
    [50]
    Zäuner, S., Ternes, P., Warnecke, D. Biosynthesis of sphingolipids in plants (and some of their functions) Adv. Exp. Med. Biol., 688 (2010),pp. 249-263
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return