5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 1
Jan.  2012
Turn off MathJax
Article Contents

Brassinosteroid Signaling and Application in Rice

doi: 10.1016/j.jgg.2011.12.001
More Information
  • Corresponding author: E-mail address: ccchu@genetics.ac.cn (Chengcai Chu)
  • Received Date: 2011-10-28
  • Accepted Date: 2011-12-14
  • Rev Recd Date: 2011-12-14
  • Available Online: 2011-12-20
  • Publish Date: 2012-01-20
  • Combined approaches with genetics, biochemistry, and proteomics studies have greatly advanced our understanding of brassinosteroid (BR) signaling in Arabidopsis. However, in rice, a model plant of monocot and as well an important crop plant, BR signaling is not as well characterized as in Arabidopsis. Recent studies by forward and reverse genetics have identified a number of either conserved or specific components of rice BR signaling pathway, bringing new ideas into BR signaling regulation mechanisms. Genetic manipulation of BR level or BR sensitivity to improve rice yield has established the great significance of BR research achievements.
  • loading
  • [1]
    Bai, M.Y., Zhang, L.Y., Gampala, S.S. et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 13839-13844
    [2]
    Bolle, C. The role of GRAS proteins in plant signal transduction and development Planta, 218 (2004),pp. 683-692
    [3]
    Chandler, J.W., Cole, M., Flier, A. et al. Plant Mol. Biol., 69 (2009),pp. 57-68
    [4]
    Choe, S., Schmitz, R.J., Fujioka, S. et al. Plant Physiol., 130 (2002),pp. 1506-1515
    [5]
    Clouse, S.D. Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression Mol. Cell, 10 (2002),pp. 973-982
    [6]
    Clouse, S.D. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development Plant Cell, 23 (2011),pp. 1219-1230
    [7]
    Dhaubhadel, S., Chaudhary, S., Dobinson, K.F. et al. Plant Mol. Biol., 40 (1999),pp. 333-342
    [8]
    Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E. et al. Cell, 86 (1996),pp. 423-433
    [9]
    Di Rubbo, S., Irani, N.G., Russinova, E. PP2A phosphatases: the “on-off” regulatory switches of brassinosteroid signaling Sci. Signal., 4 (2011),p. pe25
    [10]
    Divi, U.K., Krishna, P. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance Nat. Biotechnol., 26 (2009),pp. 131-136
    [11]
    Duan, K., Li, L., Hu, P. et al. A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling Plant J., 47 (2006),pp. 519-531
    [12]
    Friedrichsen, D.M., Nemhauser, J., Muramitsu, T. et al. Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth Genetics, 162 (2002),pp. 1445-1456
    [13]
    He, J.X., Gendron, J.M., Yang, Y. et al. Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 10185-10190
    [14]
    He, J.X., Gendron, J.M., Sun, Y. et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses Science, 307 (2005),pp. 1634-1638
    [15]
    Hong, Z., Ueguchi-Tanaka, M., Fujioka, S. et al. Plant Cell, 17 (2005),pp. 2243-2254
    [16]
    Hong, Z., Ueguchi-Tanaka, M., Umemura, K. et al. Plant Cell, 15 (2003),pp. 2900-2910
    [17]
    Huang, J., Taylor, J.P., Chen, J.G. et al. Plant Cell, 18 (2006),pp. 1226-1238
    [18]
    Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y. et al. Plant Cell, 13 (2001),pp. 999-1010
    [19]
    Ikekawa, N., Zhao, Y.J. Application of 24-epibrassinolide in agriculture ACS Symp. Ser., 474 (1991),pp. 280-291
    [20]
    Je, B.I., Piao, H.L., Park, S.J. et al. Plant Cell, 22 (2010),pp. 1777-1791
    [21]
    Joo, J.H., Wang, S.Y., Chen, J.G. et al. Plant Cell, 17 (2005),pp. 957-970
    [22]
    Kagale, S., Divi, U.K., Krochko, J.E. et al. Planta, 225 (2007),pp. 353-364
    [23]
    Khripach, V., Zhabinskii, V., De Groot, A. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century Ann. Bot., 86 (2000),pp. 441-447
    [24]
    Kim, T.W., Wang, Z.Y. Brassinosteroid signal transduction from receptor kinases to transcription factors Annu. Rev. Plant Biol., 61 (2010),pp. 681-704
    [25]
    Kim, T.W., Guan, S., Sun, Y. et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors Nat. Cell Biol., 11 (2009),pp. 1254-1260
    [26]
    Kinoshita, T., Cano-Delgado, A., Seto, H. et al. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1 Nature, 433 (2005),pp. 167-171
    [27]
    Koh, S., Lee, S.C., Kim, M.K. et al. Plant Mol. Biol., 65 (2007),pp. 453-466
    [28]
    Krishna, P. Brassinosteroid-mediated stress responses J. Plant Growth Regul., 22 (2003),pp. 289-297
    [29]
    Lee, S., Choi, S.C., An, G. Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses Plant J., 54 (2008),pp. 93-105
    [30]
    Li, D., Wang, L., Wang, M. et al. Plant Biotechnol. J., 7 (2009),pp. 791-806
    [31]
    Li, J., Nam, K.H. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase Science, 295 (2002),pp. 1299-1301
    [32]
    Li, J., Jin, H. Regulation of brassinosteroid signaling Trends Plant Sci., 12 (2007),pp. 37-41
    [33]
    Li, J., Nam, K.H., Vafeados, D. et al. Plant Physiol., 127 (2001),pp. 14-22
    [34]
    Li, J., Wen, J., Lease, K.A. et al. Cell, 110 (2002),pp. 213-222
    [35]
    Li, L., Deng, X.W. It runs in the family: regulation of brassinosteroid signaling by the BZR1-BES1 class of transcription factors Trends Plant Sci., 10 (2005),pp. 266-268
    [36]
    Li, W.Q., Wu, J.G., Weng, S.L. et al. Planta, 232 (2010),pp. 1383-1396
    [37]
    Li, X., Qian, Q., Fu, Z. et al. Control of tillering in rice Nature, 422 (2003),pp. 618-621
    [38]
    Liu, W., Xu, Z.H., Luo, D. et al. Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity Plant J., 36 (2003),pp. 189-202
    [39]
    Mora-Garcia, S., Vert, G., Yin, Y. et al. Genes Dev., 18 (2004),pp. 448-460
    [40]
    Mori, M., Nomura, T., Ooka, H. et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis Plant Physiol., 130 (2002),pp. 1152-1161
    [41]
    Morinaka, Y., Sakamoto, T., Inukai, Y. et al. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice Plant Physiol., 141 (2006),pp. 924-931
    [42]
    Nakamura, A., Fujioka, S., Sunohara, H. et al. Plant Physiol., 140 (2006),pp. 580-590
    [43]
    Nam, K.H., Li, J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling Cell, 110 (2002),pp. 203-212
    [44]
    Oki, K., Kitagawa, K., Fujisawa, Y. et al. Function of alpha subunit of heterotrimeric G protein in brassinosteroid response of rice plants Plant Signal. Behav., 4 (2009),pp. 126-128
    [45]
    Pandey, S., Chen, J.G., Jones, A.M. et al. G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development Plant Physiol., 141 (2006),pp. 243-256
    [46]
    Peng, P., Yan, Z., Zhu, Y. et al. Mol. Plant, 1 (2008),pp. 338-346
    [47]
    Peng, P., Zhao, J., Zhu, Y. et al. A direct docking mechanism for a plant GSK3-like kinase to phosphorylate its substrates J. Biol. Chem., 285 (2010),pp. 24646-24653
    [48]
    Ryu, H., Kim, K., Cho, H. et al. Plant Cell, 19 (2007),pp. 2749-2762
    [49]
    Sakamoto, T., Morinaka, Y., Ohnishi, T. et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice Nat. Biotechnol., 24 (2006),pp. 105-109
    [50]
    Suharsono, U., Fujisawa, Y., Kawasaki, T. et al. The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 13307-13312
    [51]
    Sun, Y., Fan, X.Y., Cao, D.M. et al. Dev. Cell, 19 (2010),pp. 765-777
    [52]
    Takeno, K., Pharis, R.P. Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings – an auxin-mediated phenomenon Plant Cell Physiol., 23 (1982),pp. 1275-1281
    [53]
    Tanabe, S., Ashikari, M., Fujioka, S. et al. Plant Cell, 17 (2005),pp. 776-790
    [54]
    Tanaka, A., Nakagawa, H., Tomita, C. et al. Plant Physiol., 151 (2009),pp. 669-680
    [55]
    Tang, W., Kim, T.W., Oses-Prieto, J.A. et al. Science, 321 (2008),pp. 557-560
    [56]
    Tang, W.Q., Yuan, M., Wang, R.J. et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1 Nat. Cell Biol., 13 (2011),pp. 124-U149
    [57]
    Tong, H., Chu, C. Roles of DLT in fine modulation on brassinosteroid response in rice Plant Signal. Behav., 4 (2009),pp. 438-439
    [58]
    Tong, H., Jin, Y., Liu, W. et al. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice Plant J., 58 (2009),pp. 803-816
    [59]
    Ueguchi-Tanaka, M., Fujisawa, Y., Kobayashi, M. et al. Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 11638-11643
    [60]
    Vert, G., Chory, J. Downstream nuclear events in brassinosteroid signalling Nature, 441 (2006),pp. 96-100
    [61]
    Vert, G., Walcher, C.L., Chory, J. et al. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2 Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 9829-9834
    [62]
    Wada, K., Marumo, S., Ikekawa, N. et al. Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings Plant Cell Physiol., 22 (1981),pp. 323-325
    [63]
    Wada, K., Marumo, S., Abe, H. et al. A rice lamina inclination test – a micro-quantitative bioassay for brassinosteroids Agric. Biol. Chem., 48 (1984),pp. 719-726
    [64]
    Wan, S., Wu, J., Zhang, Z. et al. Activation tagging, an efficient tool for functional analysis of the rice genome Plant Mol. Biol., 69 (2009),pp. 69-80
    [65]
    Wang, H., Zhu, Y., Fujioka, S. et al. Plant Cell, 21 (2009),pp. 3781-3791
    [66]
    Wang, L., Xu, Y.Y., Ma, Q.B. et al. Heterotrimeric G protein alpha subunit is involved in rice brassinosteroid response Cell Res., 16 (2006),pp. 916-922
    [67]
    Wang, L., Wang, Z., Xu, Y.Y. et al. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice Plant J., 57 (2009),pp. 498-510
    [68]
    Wang, X., Chory, J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane Science, 313 (2006),pp. 1118-1122
    [69]
    Wang, X., Li, X., Meisenhelder, J. et al. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1 Dev. Cell, 8 (2005),pp. 855-865
    [70]
    Wang, X., Goshe, M.B., Soderblom, E.J. et al. Plant Cell, 17 (2005),pp. 1685-1703
    [71]
    Wang, Z.Y., Nakano, T., Gendron, J. et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis Dev. Cell, 2 (2002),pp. 505-513
    [72]
    Warpeha, K.M., Upadhyay, S., Yeh, J. et al. Plant Physiol., 143 (2007),pp. 1590-1600
    [73]
    Wu, C.Y., Trieu, A., Radhakrishnan, P. et al. Brassinosteroids regulate grain filling in rice Plant Cell, 20 (2008),pp. 2130-2145
    [74]
    Wu, G., Wang, X.L., Li, X.B. et al. Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors Sci. Signal., 4 (2011),p. ra29
    [75]
    Yamamuro, C., Ihara, Y., Wu, X. et al. Plant Cell, 12 (2000),pp. 1591-1606
    [76]
    Yang, C.J., Zhang, C., Lu, Y.N. et al. The mechanisms of brassinosteroids' action: from signal transduction to plant development Mol. Plant, 4 (2011),pp. 588-600
    [77]
    Yang, G., Matsuoka, M., Iwasaki, Y. et al. A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice Plant Mol. Biol., 52 (2003),pp. 843-854
    [78]
    Yang, G.X., Komatsu, S. Plant Physiol. Biochem., 42 (2004),pp. 1-6
    [79]
    Yin, Y., Vafeados, D., Tao, Y. et al. Cell, 120 (2005),pp. 249-259
    [80]
    Yin, Y., Wang, Z.Y., Mora-Garcia, S. et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation Cell, 109 (2002),pp. 181-191
    [81]
    Yu, X.F., Li, L., Zola, J. et al. Plant J., 65 (2011),pp. 634-646
    [82]
    Zhang, L.Y., Bai, M.Y., Wu, J. et al. Plant Cell, 21 (2009),pp. 3767-3780
    [83]
    Zhao, J., Peng, P., Schmitz, R.J. et al. Two putative BIN2 substrates are nuclear components of brassinosteroid signaling Plant Physiol., 130 (2002),pp. 1221-1229
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return