5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 10
Oct.  2011
Turn off MathJax
Article Contents

Dysregulation of CDK8 and Cyclin C in tumorigenesis

doi: 10.1016/j.jgg.2011.09.002
More Information
  • Corresponding author: E-mail address: ji@medicine.tamhsc.edu (Jun-Yuan Ji)
  • Received Date: 2011-07-25
  • Accepted Date: 2011-09-06
  • Rev Recd Date: 2011-09-05
  • Available Online: 2011-09-16
  • Publish Date: 2011-10-20
  • Appropriately controlled gene expression is fundamental for normal growth and survival of all living organisms. In eukaryotes, the transcription of protein-coding mRNAs is dependent on RNA polymerase II (Pol II). The multi-subunit transcription cofactor Mediator complex is proposed to regulate most, if not all, of the Pol II-dependent transcription. Here we focus our discussion on two subunits of the Mediator complex, cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC), because they are either mutated or amplified in a variety of human cancers. CDK8 functions as an oncoprotein in melanoma and colorectal cancers, thus there are considerable interests in developing drugs specifically targeting the CDK8 kinase activity. However, to evaluate the feasibility of targeting CDK8 for cancer therapy and to understand how their dysregulation contributes to tumorigenesis, it is essential to elucidate the in vivo function and regulation of CDK8-CycC, which are still poorly understood in multi-cellular organisms. We summarize the evidence linking their dysregulation to various cancers and present our bioinformatics and computational analyses on the structure and evolution of CDK8. We also discuss the implications of these observations in tumorigenesis. Because most of the Mediator subunits, including CDK8 and CycC, are highly conserved during eukaryotic evolution, we expect that investigations using model organisms such as Drosophila will provide important insights into the function and regulation of CDK8 and CycC in different cellular and developmental contexts.
  • loading
  • [1]
    Akoulitchev, S., Chuikov, S., Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes Nature, 407 (2000),pp. 102-106
    [2]
    Barette, C., Jariel-Encontre, I., Piechaczyk, M. et al. Human cyclin C protein is stabilized by its associated kinase cdk8, independently of its catalytic activity Oncogene, 20 (2001),pp. 551-562
    [3]
    Baumli, S., Lolli, G., Lowe, E.D. et al. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation EMBO J., 27 (2008),pp. 1907-1918
    [4]
    Bernecky, C., Grob, P., Ebmeier, C.C. et al. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly PLoS Biol., 9 (2011),p. e1000603
    [5]
    Bjorklund, S., Gustafsson, C.M. The yeast Mediator complex and its regulation Trends Biochem. Sci., 30 (2005),pp. 240-244
    [6]
    Bourbon, H.M. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex Nucleic Acids Res., 36 (2008),pp. 3993-4008
    [7]
    Bourbon, H.M., Aguilera, A., Ansari, A.Z. et al. A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II Mol. Cell, 14 (2004),pp. 553-557
    [8]
    Brewster, C.D., Birkenheuer, C.H., Vogt, M.B. et al. The retroviral cyclin of walleye dermal sarcoma virus binds cyclin-dependent kinases 3 and 8 Virology, 409 (2011),pp. 299-307
    [9]
    Brown, N.R., Noble, M.E., Endicott, J.A. et al. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases Nat. Cell Biol., 1 (1999),pp. 438-443
    [10]
    Carlson, M. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD Annu. Rev. Cell Dev. Biol., 13 (1997),pp. 1-23
    [11]
    Carrera, I., Janody, F., Leeds, N. et al. Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13 Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 6644-6649
    [12]
    Casamassimi, A., Napoli, C. Mediator complexes and eukaryotic transcription regulation: an overview Biochimie, 89 (2007),pp. 1439-1446
    [13]
    Chattopadhyay, I., Singh, A., Phukan, R. et al. Genome-wide analysis of chromosomal alterations in patients with esophageal squamous cell carcinoma exposed to tobacco and betel quid from high-risk area in India Mutat. Res., 696 (2010),pp. 130-138
    [14]
    Conaway, R.C., Conaway, J.W. Function and regulation of the Mediator complex Curr. Opin. Genet. Dev., 21 (2011),pp. 225-230
    [15]
    Conaway, R.C., Sato, S., Tomomori-Sato, C. et al. The mammalian Mediator complex and its role in transcriptional regulation Trends Biochem. Sci., 30 (2005),pp. 250-255
    [16]
    Ding, N., Tomomori-Sato, C., Sato, S. et al. MED19 and MED26 are synergistic functional targets of the RE1 silencing transcription factor in epigenetic silencing of neuronal gene expression J. Biol. Chem., 284 (2009),pp. 2648-2656
    [17]
    Ding, N., Zhou, H., Esteve, P.O. et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation Mol. Cell, 31 (2008),pp. 347-359
    [18]
    Doonan, J.H., Kitsios, G. Functional evolution of cyclin-dependent kinases Mol. Biotechnol., 42 (2009),pp. 14-29
    [19]
    Ebmeier, C.C., Taatjes, D.J. Activator-Mediator binding regulates Mediator-cofactor interactions Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 11283-11288
    [20]
    Elmlund, H., Baraznenok, V., Lindahl, M. et al. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 15788-15793
    [21]
    Feinberg, A.P., Tycko, B. The history of cancer epigenetics Nat. Rev. Cancer, 4 (2004),pp. 143-153
    [22]
    Firestein, R., Hahn, W.C. Revving the Throttle on an oncogene: CDK8 takes the driver seat Cancer Res., 69 (2009),pp. 7899-7901
    [23]
    Firestein, R., Shima, K., Nosho, K. et al. CDK8 expression in 470 colorectal cancers in relation to beta-catenin activation, other molecular alterations and patient survival Int. J. Cancer, 126 (2010),pp. 2863-2873
    [24]
    Firestein, R., Bass, A.J., Kim, S.Y. et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity Nature, 455 (2008),pp. 547-551
    [25]
    Fisher, R.P. Secrets of a double agent: CDK7 in cell-cycle control and transcription J. Cell Sci., 118 (2005),pp. 5171-5180
    [26]
    Fryer, C.J., White, J.B., Jones, K.A. Mastermind recruits CycC: CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover Mol. Cell, 16 (2004),pp. 509-520
    [27]
    Galamb, O., Sipos, F., Molnar, B. et al. Evaluation of malignant and benign gastric biopsy specimens by mRNA expression profile and multivariate statistical methods Cytometry B Clin. Cytom., 72 (2007),pp. 299-309
    [28]
    Galbraith, M.D., Donner, A.J., Espinosa, J.M. CDK8: a positive regulator of transcription Transcription, 1 (2010),pp. 4-12
    [29]
    Gobert, V., Osman, D., Bras, S. et al. Mol. Cell. Biol., 30 (2010),pp. 2837-2848
    [30]
    Greene, D.M., Hsu, D.W., Pears, C.J. Control of cyclin C levels during development of Dictyostelium PLoS One, 5 (2010),p. e10543
    [31]
    Greenman, C., Stephens, P., Smith, R. et al. Patterns of somatic mutation in human cancer genomes Nature, 446 (2007),pp. 153-158
    [32]
    Hahn, S. Structure and mechanism of the RNA polymerase II transcription machinery Nat. Struct. Mol. Biol., 11 (2004),pp. 394-403
    [33]
    Hallberg, M., Polozkov, G.V., Hu, G.Z. et al. Site-specific Srb10-dependent phosphorylation of the yeast Mediator subunit Med2 regulates gene expression from the 2-microm plasmid Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 3370-3375
    [34]
    Hallstrom, T.C., Mori, S., Nevins, J.R. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death Cancer Cell, 13 (2008),pp. 11-22
    [35]
    Hanahan, D., Weinberg, R.A. The hallmarks of cancer Cell, 100 (2000),pp. 57-70
    [36]
    Hengartner, C.J., Myer, V.E., Liao, S.M. et al. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases Mol. Cell, 2 (1998),pp. 43-53
    [37]
    Hoffmans, R., Stadeli, R., Basler, K. Pygopus and legless provide essential transcriptional coactivator functions to armadillo/beta-catenin Curr. Biol., 15 (2005),pp. 1207-1211
    [38]
    Honda, R., Lowe, E.D., Dubinina, E. et al. The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles EMBO J., 24 (2005),pp. 452-463
    [39]
    Huang, K., Ferrin-O’Connell, I., Zhang, W. et al. Structure of the Pho85-Pho80 CDK-cyclin complex of the phosphate-responsive signal transduction pathway Mol. Cell, 28 (2007),pp. 614-623
    [40]
    Hughes, T.A., Brady, H.J. E2F1 up-regulates the expression of the tumour suppressor axin2 both by activation of transcription and by mRNA stabilisation Biochem. Biophys. Res. Commun., 329 (2005),pp. 1267-1274
    [41]
    Janody, F., Martirosyan, Z., Benlali, A. et al. Development, 130 (2003),pp. 3691-3701
    [42]
    Ji, J.Y., Dyson, N.J.
    [43]
    Kapoor, A., Goldberg, M.S., Cumberland, L.K. et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8 Nature, 468 (2010),pp. 1105-1109
    [44]
    Kaur, M., Velmurugan, B., Tyagi, A. et al. Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling Neoplasia, 12 (2010),pp. 415-424
    [45]
    Kim, M.Y., Han, S.I., Lim, S.C. Roles of cyclin-dependent kinase 8 and beta-catenin in the oncogenesis and progression of gastric adenocarcinoma Int. J. Oncol., 38 (2011),pp. 1375-1383
    [46]
    Kim, S., Xu, X., Hecht, A. et al. Mediator is a transducer of Wnt/beta-catenin signaling J. Biol. Chem., 281 (2006),pp. 14066-14075
    [47]
    Kim, Y.J., Lis, J.T. Trends Biochem. Sci., 30 (2005),pp. 245-249
    [48]
    Kinzler, K.W., Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers Nature, 386 (1997),pp. 761-763
    [49]
    Knuesel, M.T., Taatjes, D.J. Mediator and post-recruitment regulation of RNA polymerase II Transcription, 2 (2011),pp. 28-31
    [50]
    Knuesel, M.T., Meyer, K.D., Bernecky, C. et al. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function Genes Dev., 23 (2009),pp. 439-451
    [51]
    Knuesel, M.T., Meyer, K.D., Donner, A.J. et al. The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator Mol. Cell. Biol., 29 (2009),pp. 650-661
    [52]
    Kornberg, R.D. Mediator and the mechanism of transcriptional activation Trends Biochem. Sci., 30 (2005),pp. 235-239
    [53]
    Krasley, E., Cooper, K.F., Mallory, M.J. et al. Genetics, 172 (2006),pp. 1477-1486
    [54]
    Larochelle, S., Chen, J., Knights, R. et al. EMBO J., 20 (2001),pp. 3749-3759
    [55]
    Leclerc, V., Tassan, J.P., O’Farrell, P.H. et al. Mol. Biol. Cell, 7 (1996),pp. 505-513
    [56]
    Li, H., Lahti, J.M., Kidd, V.J. Alternatively spliced cyclin C mRNA is widely expressed, cell cycle regulated, and encodes a truncated cyclin box Oncogene, 13 (1996),pp. 705-712
    [57]
    Liu, J., Kipreos, E.T. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa Mol. Biol. Evol., 17 (2000),pp. 1061-1074
    [58]
    Liu, L.X., Liu, Z.H., Jiang, H.C. et al. Gene expression profiles of hepatoma cell line HLE World J. Gastroenterol., 9 (2003),pp. 683-687
    [59]
    Liu, L.X., Jiang, H.C., Liu, Z.H. et al. Gene expression profiles of hepatoma cell line BEL-7402 Hepatogastroenterology, 50 (2003),pp. 1496-1501
    [60]
    Liu, Y., Kung, C., Fishburn, J. et al. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex Mol. Cell. Biol., 24 (2004),pp. 1721-1735
    [61]
    Lolli, G., Lowe, E.D., Brown, N.R. et al. The crystal structure of human CDK7 and its protein recognition properties Structure, 12 (2004),pp. 2067-2079
    [62]
    Loncle, N., Boube, M., Joulia, L. et al. EMBO J., 26 (2007),pp. 1045-1054
    [63]
    Malik, S., Roeder, R.G. Dynamic regulation of pol II transcription by the mammalian Mediator complex Trends Biochem. Sci., 30 (2005),pp. 256-263
    [64]
    Malik, S., Guermah, M., Yuan, C.X. et al. Structural and functional organization of TRAP220, the TRAP/mediator subunit that is targeted by nuclear receptors Mol. Cell. Biol., 24 (2004),pp. 8244-8254
    [65]
    Malumbres, M., Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm Nat. Rev. Cancer, 9 (2009),pp. 153-166
    [66]
    Martin, E.S., Tonon, G., Sinha, R. et al. Common and distinct genomic events in sporadic colorectal cancer and diverse cancer types Cancer Res., 67 (2007),pp. 10736-10743
    [67]
    Martinez, A.M., Afshar, M., Martin, F. et al. Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity EMBO J., 16 (1997),pp. 343-354
    [68]
    McAloose, D., Newton, A.L. Wildlife cancer: a conservation perspective Nat. Rev. Cancer, 9 (2009),pp. 517-526
    [69]
    Meyer, K.D., Donner, A.J., Knuesel, M.T. et al. Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3 EMBO J., 27 (2008),pp. 1447-1457
    [70]
    Mitra, A.P., Almal, A.A., George, B. et al. The use of genetic programming in the analysis of quantitative gene expression profiles for identification of nodal status in bladder cancer BMC Cancer, 6 (2006),p. 159
    [71]
    Mittler, G., Kremmer, E., Timmers, H.T. et al. Novel critical role of a human Mediator complex for basal RNA polymerase II transcription EMBO Rep., 2 (2001),pp. 808-813
    [72]
    Morris, E.J., Ji, J.Y., Yang, F. et al. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8 Nature, 455 (2008),pp. 552-556
    [73]
    Mukhopadhyay, A., Kramer, J.M., Merkx, G. et al. CDK19 is disrupted in a female patient with bilateral congenital retinal folds, microcephaly and mild mental retardation Hum. Genet., 128 (2010),pp. 281-291
    [74]
    Myers, L.C., Kornberg, R.D. Mediator of transcriptional regulation Annu. Rev. Biochem., 69 (2000),pp. 729-749
    [75]
    Näär, A.M., Lemon, B.D., Tjian, R. Transcriptional coactivator complexes Annu. Rev. Biochem., 70 (2001),pp. 475-501
    [76]
    Näär, A.M., Taatjes, D.J., Zhai, W. et al. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation Genes Dev., 16 (2002),pp. 1339-1344
    [77]
    Nagaraj, S.H., Reverter, A. A Boolean-based systems biology approach to predict novel genes associated with cancer: application to colorectal cancer BMC Syst. Biol., 5 (2011),p. 35
    [78]
    Ohata, N., Ito, S., Yoshida, A. et al. Highly frequent allelic loss of chromosome 6q16-23 in osteosarcoma: involvement of cyclin C in osteosarcoma Int. J. Mol. Med., 18 (2006),pp. 1153-1158
    [79]
    Osherovich, L. CDK8 is enough in colorectal cancer SciBX, 1 (2008),pp. 5-7
    [80]
    Ren, S., Rollins, B.J. Cyclin C/cdk3 promotes Rb-dependent G0 exit Cell, 117 (2004),pp. 239-251
    [81]
    Rovnak, J., Quackenbush, S.L. Walleye dermal sarcoma virus cyclin interacts with components of the mediator complex and the RNA polymerase II holoenzyme J. Virol., 76 (2002),pp. 8031-8039
    [82]
    Russo, A.A., Jeffrey, P.D., Pavletich, N.P. Structural basis of cyclin-dependent kinase activation by phosphorylation Nat. Struct. Biol., 3 (1996),pp. 696-700
    [83]
    Sali, A., Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints J. Mol. Biol., 234 (1993),pp. 779-815
    [84]
    Samuelsen, C.O., Baraznenok, V., Khorosjutina, O. et al. TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 6422-6427
    [85]
    Sato, S., Tomomori-Sato, C., Parmely, T.J. et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology Mol. Cell, 14 (2004),pp. 685-691
    [86]
    Schneider, E.V., Bottcher, J., Blaesse, M. et al. The structure of CDK8/CycC implicates specificity in the CDK/Cyclin family and reveals interaction with a deep pocket binder J. Mol. Biol., 412 (2011),pp. 251-266
    [87]
    Seo, J.O., Han, S.I., Lim, S.C. Role of CDK8 and beta-catenin in colorectal adenocarcinoma Oncol. Rep., 24 (2010),pp. 285-291
    [88]
    Shahi, P., Gulshan, K., Näär, A.M. et al. Mol. Biol. Cell, 21 (2010),pp. 2469-2482
    [89]
    Sharma, S., Kelly, T.K., Jones, P.A. Epigenetics in cancer Carcinogenesis, 31 (2010),pp. 27-36
    [90]
    Sheffer, M., Bacolod, M.D., Zuk, O. et al. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 7131-7136
    [91]
    Simmerling, C., Strockbine, B., Roitberg, A.E. All-atom structure prediction and folding simulations of a stable protein J. Am. Chem. Soc., 124 (2002),pp. 11258-11259
    [92]
    Su, A.I., Wiltshire, T., Batalov, S. et al. A gene atlas of the mouse and human protein-encoding transcriptomes Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 6062-6067
    [93]
    Taatjes, D.J. The human Mediator complex: a versatile, genome-wide regulator of transcription Trends Biochem. Sci., 35 (2010),pp. 315-322
    [94]
    Taatjes, D.J., Näär, A.M., , Nogales, E. et al. Structure, function, and activator-induced conformations of the CRSP coactivator Science, 295 (2002),pp. 1058-1062
    [95]
    Takahashi, H., Parmely, T.J., Sato, S. et al. Human Mediator subunit MED26 functions as a docking site for transcription elongation factors Cell, 146 (2011),pp. 92-104
    [96]
    Takaki, T., Echalier, A., Brown, N.R. et al. The structure of CDK4/cyclin D3 has implications for models of CDK activation Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 4171-4176
    [97]
    Tansey, W.P. Transcriptional activation: risky business Genes Dev., 15 (2001),pp. 1045-1050
    [98]
    Tassan, J.P., Jaquenoud, M., Leopold, P. et al. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 8871-8875
    [99]
    Townsley, F.M., Cliffe, A., Bienz, M. Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function Nat. Cell Biol., 6 (2004),pp. 626-633
    [100]
    Tsafrir, D., Bacolod, M., Selvanayagam, Z. et al. Relationship of gene expression and chromosomal abnormalities in colorectal cancer Cancer Res., 66 (2006),pp. 2129-2137
    [101]
    van de Peppel, J., Kettelarij, N., van Bakel, H. et al. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets Mol. Cell, 19 (2005),pp. 511-522
    [102]
    van Delft, F.W., Horsley, S., Colman, S. et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia Blood, 117 (2011),pp. 6247-6254
    [103]
    Velmurugan, B., Gangar, S.C., Kaur, M. et al. Silibinin exerts sustained growth suppressive effect against human colon carcinoma SW480 xenograft by targeting multiple signaling molecules Pharm. Res., 27 (2010),pp. 2085-2097
    [104]
    Westerling, T., Kuuluvainen, E., Makela, T.P. Cdk8 is essential for preimplantation mouse development Mol. Cell. Biol., 27 (2007),pp. 6177-6182
    [105]
    Wu, S.Y., McNae, I., Kontopidis, G. et al. Discovery of a novel family of CDK inhibitors with the program LIDAEUS: structural basis for ligand-induced disordering of the activation loop Structure, 11 (2003),pp. 399-410
    [106]
    Yang, S., Jeung, H.C., Jeong, H.J. et al. Identification of genes with correlated patterns of variations in DNA copy number and gene expression level in gastric cancer Genomics, 89 (2007),pp. 451-459
    [107]
    Ye, X., Zhu, C., Harper, J.W. A premature-termination mutation in the Mus musculus cyclin-dependent kinase 3 gene Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 1682-1686
    [108]
    Yoda, A., Kouike, H., Okano, H. et al. Development, 132 (2005),pp. 1885-1893
    [109]
    Yudkovsky, N., Ranish, J.A., Hahn, S. A transcription reinitiation intermediate that is stabilized by activator Nature, 408 (2000),pp. 225-229
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return