[1] |
Akoulitchev, S., Chuikov, S., Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes Nature, 407 (2000),pp. 102-106
|
[2] |
Barette, C., Jariel-Encontre, I., Piechaczyk, M. et al. Human cyclin C protein is stabilized by its associated kinase cdk8, independently of its catalytic activity Oncogene, 20 (2001),pp. 551-562
|
[3] |
Baumli, S., Lolli, G., Lowe, E.D. et al. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation EMBO J., 27 (2008),pp. 1907-1918
|
[4] |
Bernecky, C., Grob, P., Ebmeier, C.C. et al. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly PLoS Biol., 9 (2011),p. e1000603
|
[5] |
Bjorklund, S., Gustafsson, C.M. The yeast Mediator complex and its regulation Trends Biochem. Sci., 30 (2005),pp. 240-244
|
[6] |
Bourbon, H.M. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex Nucleic Acids Res., 36 (2008),pp. 3993-4008
|
[7] |
Bourbon, H.M., Aguilera, A., Ansari, A.Z. et al. A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II Mol. Cell, 14 (2004),pp. 553-557
|
[8] |
Brewster, C.D., Birkenheuer, C.H., Vogt, M.B. et al. The retroviral cyclin of walleye dermal sarcoma virus binds cyclin-dependent kinases 3 and 8 Virology, 409 (2011),pp. 299-307
|
[9] |
Brown, N.R., Noble, M.E., Endicott, J.A. et al. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases Nat. Cell Biol., 1 (1999),pp. 438-443
|
[10] |
Carlson, M. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD Annu. Rev. Cell Dev. Biol., 13 (1997),pp. 1-23
|
[11] |
Carrera, I., Janody, F., Leeds, N. et al. Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13 Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 6644-6649
|
[12] |
Casamassimi, A., Napoli, C. Mediator complexes and eukaryotic transcription regulation: an overview Biochimie, 89 (2007),pp. 1439-1446
|
[13] |
Chattopadhyay, I., Singh, A., Phukan, R. et al. Genome-wide analysis of chromosomal alterations in patients with esophageal squamous cell carcinoma exposed to tobacco and betel quid from high-risk area in India Mutat. Res., 696 (2010),pp. 130-138
|
[14] |
Conaway, R.C., Conaway, J.W. Function and regulation of the Mediator complex Curr. Opin. Genet. Dev., 21 (2011),pp. 225-230
|
[15] |
Conaway, R.C., Sato, S., Tomomori-Sato, C. et al. The mammalian Mediator complex and its role in transcriptional regulation Trends Biochem. Sci., 30 (2005),pp. 250-255
|
[16] |
Ding, N., Tomomori-Sato, C., Sato, S. et al. MED19 and MED26 are synergistic functional targets of the RE1 silencing transcription factor in epigenetic silencing of neuronal gene expression J. Biol. Chem., 284 (2009),pp. 2648-2656
|
[17] |
Ding, N., Zhou, H., Esteve, P.O. et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation Mol. Cell, 31 (2008),pp. 347-359
|
[18] |
Doonan, J.H., Kitsios, G. Functional evolution of cyclin-dependent kinases Mol. Biotechnol., 42 (2009),pp. 14-29
|
[19] |
Ebmeier, C.C., Taatjes, D.J. Activator-Mediator binding regulates Mediator-cofactor interactions Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 11283-11288
|
[20] |
Elmlund, H., Baraznenok, V., Lindahl, M. et al. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 15788-15793
|
[21] |
Feinberg, A.P., Tycko, B. The history of cancer epigenetics Nat. Rev. Cancer, 4 (2004),pp. 143-153
|
[22] |
Firestein, R., Hahn, W.C. Revving the Throttle on an oncogene: CDK8 takes the driver seat Cancer Res., 69 (2009),pp. 7899-7901
|
[23] |
Firestein, R., Shima, K., Nosho, K. et al. CDK8 expression in 470 colorectal cancers in relation to beta-catenin activation, other molecular alterations and patient survival Int. J. Cancer, 126 (2010),pp. 2863-2873
|
[24] |
Firestein, R., Bass, A.J., Kim, S.Y. et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity Nature, 455 (2008),pp. 547-551
|
[25] |
Fisher, R.P. Secrets of a double agent: CDK7 in cell-cycle control and transcription J. Cell Sci., 118 (2005),pp. 5171-5180
|
[26] |
Fryer, C.J., White, J.B., Jones, K.A. Mastermind recruits CycC: CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover Mol. Cell, 16 (2004),pp. 509-520
|
[27] |
Galamb, O., Sipos, F., Molnar, B. et al. Evaluation of malignant and benign gastric biopsy specimens by mRNA expression profile and multivariate statistical methods Cytometry B Clin. Cytom., 72 (2007),pp. 299-309
|
[28] |
Galbraith, M.D., Donner, A.J., Espinosa, J.M. CDK8: a positive regulator of transcription Transcription, 1 (2010),pp. 4-12
|
[29] |
Gobert, V., Osman, D., Bras, S. et al. Mol. Cell. Biol., 30 (2010),pp. 2837-2848
|
[30] |
Greene, D.M., Hsu, D.W., Pears, C.J. Control of cyclin C levels during development of Dictyostelium PLoS One, 5 (2010),p. e10543
|
[31] |
Greenman, C., Stephens, P., Smith, R. et al. Patterns of somatic mutation in human cancer genomes Nature, 446 (2007),pp. 153-158
|
[32] |
Hahn, S. Structure and mechanism of the RNA polymerase II transcription machinery Nat. Struct. Mol. Biol., 11 (2004),pp. 394-403
|
[33] |
Hallberg, M., Polozkov, G.V., Hu, G.Z. et al. Site-specific Srb10-dependent phosphorylation of the yeast Mediator subunit Med2 regulates gene expression from the 2-microm plasmid Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 3370-3375
|
[34] |
Hallstrom, T.C., Mori, S., Nevins, J.R. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death Cancer Cell, 13 (2008),pp. 11-22
|
[35] |
Hanahan, D., Weinberg, R.A. The hallmarks of cancer Cell, 100 (2000),pp. 57-70
|
[36] |
Hengartner, C.J., Myer, V.E., Liao, S.M. et al. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases Mol. Cell, 2 (1998),pp. 43-53
|
[37] |
Hoffmans, R., Stadeli, R., Basler, K. Pygopus and legless provide essential transcriptional coactivator functions to armadillo/beta-catenin Curr. Biol., 15 (2005),pp. 1207-1211
|
[38] |
Honda, R., Lowe, E.D., Dubinina, E. et al. The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles EMBO J., 24 (2005),pp. 452-463
|
[39] |
Huang, K., Ferrin-O’Connell, I., Zhang, W. et al. Structure of the Pho85-Pho80 CDK-cyclin complex of the phosphate-responsive signal transduction pathway Mol. Cell, 28 (2007),pp. 614-623
|
[40] |
Hughes, T.A., Brady, H.J. E2F1 up-regulates the expression of the tumour suppressor axin2 both by activation of transcription and by mRNA stabilisation Biochem. Biophys. Res. Commun., 329 (2005),pp. 1267-1274
|
[41] |
Janody, F., Martirosyan, Z., Benlali, A. et al. Development, 130 (2003),pp. 3691-3701
|
[42] |
Ji, J.Y., Dyson, N.J.
|
[43] |
Kapoor, A., Goldberg, M.S., Cumberland, L.K. et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8 Nature, 468 (2010),pp. 1105-1109
|
[44] |
Kaur, M., Velmurugan, B., Tyagi, A. et al. Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling Neoplasia, 12 (2010),pp. 415-424
|
[45] |
Kim, M.Y., Han, S.I., Lim, S.C. Roles of cyclin-dependent kinase 8 and beta-catenin in the oncogenesis and progression of gastric adenocarcinoma Int. J. Oncol., 38 (2011),pp. 1375-1383
|
[46] |
Kim, S., Xu, X., Hecht, A. et al. Mediator is a transducer of Wnt/beta-catenin signaling J. Biol. Chem., 281 (2006),pp. 14066-14075
|
[47] |
Kim, Y.J., Lis, J.T. Trends Biochem. Sci., 30 (2005),pp. 245-249
|
[48] |
Kinzler, K.W., Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers Nature, 386 (1997),pp. 761-763
|
[49] |
Knuesel, M.T., Taatjes, D.J. Mediator and post-recruitment regulation of RNA polymerase II Transcription, 2 (2011),pp. 28-31
|
[50] |
Knuesel, M.T., Meyer, K.D., Bernecky, C. et al. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function Genes Dev., 23 (2009),pp. 439-451
|
[51] |
Knuesel, M.T., Meyer, K.D., Donner, A.J. et al. The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator Mol. Cell. Biol., 29 (2009),pp. 650-661
|
[52] |
Kornberg, R.D. Mediator and the mechanism of transcriptional activation Trends Biochem. Sci., 30 (2005),pp. 235-239
|
[53] |
Krasley, E., Cooper, K.F., Mallory, M.J. et al. Genetics, 172 (2006),pp. 1477-1486
|
[54] |
Larochelle, S., Chen, J., Knights, R. et al. EMBO J., 20 (2001),pp. 3749-3759
|
[55] |
Leclerc, V., Tassan, J.P., O’Farrell, P.H. et al. Mol. Biol. Cell, 7 (1996),pp. 505-513
|
[56] |
Li, H., Lahti, J.M., Kidd, V.J. Alternatively spliced cyclin C mRNA is widely expressed, cell cycle regulated, and encodes a truncated cyclin box Oncogene, 13 (1996),pp. 705-712
|
[57] |
Liu, J., Kipreos, E.T. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa Mol. Biol. Evol., 17 (2000),pp. 1061-1074
|
[58] |
Liu, L.X., Liu, Z.H., Jiang, H.C. et al. Gene expression profiles of hepatoma cell line HLE World J. Gastroenterol., 9 (2003),pp. 683-687
|
[59] |
Liu, L.X., Jiang, H.C., Liu, Z.H. et al. Gene expression profiles of hepatoma cell line BEL-7402 Hepatogastroenterology, 50 (2003),pp. 1496-1501
|
[60] |
Liu, Y., Kung, C., Fishburn, J. et al. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex Mol. Cell. Biol., 24 (2004),pp. 1721-1735
|
[61] |
Lolli, G., Lowe, E.D., Brown, N.R. et al. The crystal structure of human CDK7 and its protein recognition properties Structure, 12 (2004),pp. 2067-2079
|
[62] |
Loncle, N., Boube, M., Joulia, L. et al. EMBO J., 26 (2007),pp. 1045-1054
|
[63] |
Malik, S., Roeder, R.G. Dynamic regulation of pol II transcription by the mammalian Mediator complex Trends Biochem. Sci., 30 (2005),pp. 256-263
|
[64] |
Malik, S., Guermah, M., Yuan, C.X. et al. Structural and functional organization of TRAP220, the TRAP/mediator subunit that is targeted by nuclear receptors Mol. Cell. Biol., 24 (2004),pp. 8244-8254
|
[65] |
Malumbres, M., Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm Nat. Rev. Cancer, 9 (2009),pp. 153-166
|
[66] |
Martin, E.S., Tonon, G., Sinha, R. et al. Common and distinct genomic events in sporadic colorectal cancer and diverse cancer types Cancer Res., 67 (2007),pp. 10736-10743
|
[67] |
Martinez, A.M., Afshar, M., Martin, F. et al. Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity EMBO J., 16 (1997),pp. 343-354
|
[68] |
McAloose, D., Newton, A.L. Wildlife cancer: a conservation perspective Nat. Rev. Cancer, 9 (2009),pp. 517-526
|
[69] |
Meyer, K.D., Donner, A.J., Knuesel, M.T. et al. Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3 EMBO J., 27 (2008),pp. 1447-1457
|
[70] |
Mitra, A.P., Almal, A.A., George, B. et al. The use of genetic programming in the analysis of quantitative gene expression profiles for identification of nodal status in bladder cancer BMC Cancer, 6 (2006),p. 159
|
[71] |
Mittler, G., Kremmer, E., Timmers, H.T. et al. Novel critical role of a human Mediator complex for basal RNA polymerase II transcription EMBO Rep., 2 (2001),pp. 808-813
|
[72] |
Morris, E.J., Ji, J.Y., Yang, F. et al. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8 Nature, 455 (2008),pp. 552-556
|
[73] |
Mukhopadhyay, A., Kramer, J.M., Merkx, G. et al. CDK19 is disrupted in a female patient with bilateral congenital retinal folds, microcephaly and mild mental retardation Hum. Genet., 128 (2010),pp. 281-291
|
[74] |
Myers, L.C., Kornberg, R.D. Mediator of transcriptional regulation Annu. Rev. Biochem., 69 (2000),pp. 729-749
|
[75] |
Näär, A.M., Lemon, B.D., Tjian, R. Transcriptional coactivator complexes Annu. Rev. Biochem., 70 (2001),pp. 475-501
|
[76] |
Näär, A.M., Taatjes, D.J., Zhai, W. et al. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation Genes Dev., 16 (2002),pp. 1339-1344
|
[77] |
Nagaraj, S.H., Reverter, A. A Boolean-based systems biology approach to predict novel genes associated with cancer: application to colorectal cancer BMC Syst. Biol., 5 (2011),p. 35
|
[78] |
Ohata, N., Ito, S., Yoshida, A. et al. Highly frequent allelic loss of chromosome 6q16-23 in osteosarcoma: involvement of cyclin C in osteosarcoma Int. J. Mol. Med., 18 (2006),pp. 1153-1158
|
[79] |
Osherovich, L. CDK8 is enough in colorectal cancer SciBX, 1 (2008),pp. 5-7
|
[80] |
Ren, S., Rollins, B.J. Cyclin C/cdk3 promotes Rb-dependent G0 exit Cell, 117 (2004),pp. 239-251
|
[81] |
Rovnak, J., Quackenbush, S.L. Walleye dermal sarcoma virus cyclin interacts with components of the mediator complex and the RNA polymerase II holoenzyme J. Virol., 76 (2002),pp. 8031-8039
|
[82] |
Russo, A.A., Jeffrey, P.D., Pavletich, N.P. Structural basis of cyclin-dependent kinase activation by phosphorylation Nat. Struct. Biol., 3 (1996),pp. 696-700
|
[83] |
Sali, A., Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints J. Mol. Biol., 234 (1993),pp. 779-815
|
[84] |
Samuelsen, C.O., Baraznenok, V., Khorosjutina, O. et al. TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 6422-6427
|
[85] |
Sato, S., Tomomori-Sato, C., Parmely, T.J. et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology Mol. Cell, 14 (2004),pp. 685-691
|
[86] |
Schneider, E.V., Bottcher, J., Blaesse, M. et al. The structure of CDK8/CycC implicates specificity in the CDK/Cyclin family and reveals interaction with a deep pocket binder J. Mol. Biol., 412 (2011),pp. 251-266
|
[87] |
Seo, J.O., Han, S.I., Lim, S.C. Role of CDK8 and beta-catenin in colorectal adenocarcinoma Oncol. Rep., 24 (2010),pp. 285-291
|
[88] |
Shahi, P., Gulshan, K., Näär, A.M. et al. Mol. Biol. Cell, 21 (2010),pp. 2469-2482
|
[89] |
Sharma, S., Kelly, T.K., Jones, P.A. Epigenetics in cancer Carcinogenesis, 31 (2010),pp. 27-36
|
[90] |
Sheffer, M., Bacolod, M.D., Zuk, O. et al. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 7131-7136
|
[91] |
Simmerling, C., Strockbine, B., Roitberg, A.E. All-atom structure prediction and folding simulations of a stable protein J. Am. Chem. Soc., 124 (2002),pp. 11258-11259
|
[92] |
Su, A.I., Wiltshire, T., Batalov, S. et al. A gene atlas of the mouse and human protein-encoding transcriptomes Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 6062-6067
|
[93] |
Taatjes, D.J. The human Mediator complex: a versatile, genome-wide regulator of transcription Trends Biochem. Sci., 35 (2010),pp. 315-322
|
[94] |
Taatjes, D.J., Näär, A.M., , Nogales, E. et al. Structure, function, and activator-induced conformations of the CRSP coactivator Science, 295 (2002),pp. 1058-1062
|
[95] |
Takahashi, H., Parmely, T.J., Sato, S. et al. Human Mediator subunit MED26 functions as a docking site for transcription elongation factors Cell, 146 (2011),pp. 92-104
|
[96] |
Takaki, T., Echalier, A., Brown, N.R. et al. The structure of CDK4/cyclin D3 has implications for models of CDK activation Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 4171-4176
|
[97] |
Tansey, W.P. Transcriptional activation: risky business Genes Dev., 15 (2001),pp. 1045-1050
|
[98] |
Tassan, J.P., Jaquenoud, M., Leopold, P. et al. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 8871-8875
|
[99] |
Townsley, F.M., Cliffe, A., Bienz, M. Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function Nat. Cell Biol., 6 (2004),pp. 626-633
|
[100] |
Tsafrir, D., Bacolod, M., Selvanayagam, Z. et al. Relationship of gene expression and chromosomal abnormalities in colorectal cancer Cancer Res., 66 (2006),pp. 2129-2137
|
[101] |
van de Peppel, J., Kettelarij, N., van Bakel, H. et al. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets Mol. Cell, 19 (2005),pp. 511-522
|
[102] |
van Delft, F.W., Horsley, S., Colman, S. et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia Blood, 117 (2011),pp. 6247-6254
|
[103] |
Velmurugan, B., Gangar, S.C., Kaur, M. et al. Silibinin exerts sustained growth suppressive effect against human colon carcinoma SW480 xenograft by targeting multiple signaling molecules Pharm. Res., 27 (2010),pp. 2085-2097
|
[104] |
Westerling, T., Kuuluvainen, E., Makela, T.P. Cdk8 is essential for preimplantation mouse development Mol. Cell. Biol., 27 (2007),pp. 6177-6182
|
[105] |
Wu, S.Y., McNae, I., Kontopidis, G. et al. Discovery of a novel family of CDK inhibitors with the program LIDAEUS: structural basis for ligand-induced disordering of the activation loop Structure, 11 (2003),pp. 399-410
|
[106] |
Yang, S., Jeung, H.C., Jeong, H.J. et al. Identification of genes with correlated patterns of variations in DNA copy number and gene expression level in gastric cancer Genomics, 89 (2007),pp. 451-459
|
[107] |
Ye, X., Zhu, C., Harper, J.W. A premature-termination mutation in the Mus musculus cyclin-dependent kinase 3 gene Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 1682-1686
|
[108] |
Yoda, A., Kouike, H., Okano, H. et al. Development, 132 (2005),pp. 1885-1893
|
[109] |
Yudkovsky, N., Ranish, J.A., Hahn, S. A transcription reinitiation intermediate that is stabilized by activator Nature, 408 (2000),pp. 225-229
|