5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 11
Nov.  2011
Turn off MathJax
Article Contents

Small RNA transcriptome investigation based on next-generation sequencing technology

doi: 10.1016/j.jgg.2011.08.006
More Information
  • Corresponding author: E-mail address: zhfq@mail.biols.ac.cn (Fangqing Zhao); E-mail address: iamwujy@yahoo.com.cn (Jinyu Wu)
  • Received Date: 2011-06-17
  • Accepted Date: 2011-08-25
  • Rev Recd Date: 2011-08-25
  • Available Online: 2011-08-31
  • Publish Date: 2011-11-20
  • Over the past decade, there has been a growing realization that studying the small RNA transcriptome is essential for understanding the complexity of transcriptional regulation. With an increased throughput and a reduced cost, next-generation sequencing technology has provided an unprecedented opportunity to measure the extent and complexity of small RNA transcriptome. Meanwhile, the large amount of obtained data and varied technology platforms have also posed multiple challenges for effective data analysis and mining. To provide some insight into the small RNA transcriptome investigation, this review describes the major small RNA classes, experimental methods to identify small RNAs, and available bioinformatics tools and databases.
  • loading
  • [1]
    Ambros, V., Lee, R.C., Lavanway, A. et al. Curr. Biol., 13 (2003),pp. 807-818
    [2]
    Aravin, A.A., Naumova, N.M., Tulin, A.V. et al. Curr. Biol., 11 (2001),pp. 1017-1027
    [3]
    Aravin, A.A., Sachidanandam, R., Girard, A. et al. Developmentally regulated piRNA clusters implicate MILI in transposon control Science, 316 (2007),pp. 744-747
    [4]
    Asli, N.S., Pitulescu, M.E., Kessel, M. MicroRNAs in organogenesis and disease Curr. Mol. Med., 8 (2008),pp. 698-710
    [5]
    Bao, H., Guo, H., Wang, J. et al. MapView: visualization of short reads alignment on a desktop computer Bioinformatics, 25 (2009),pp. 1554-1555
    [6]
    Barad, O., Meiri, E., Avniel, A. et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues Genome Res., 14 (2004),pp. 2486-2494
    [7]
    Barrett, T., Troup, D.B., Wilhite, S.E. et al. NCBI GEO: mining tens of millions of expression profiles – database and tools update Nucleic Acids Res., 35 (2007),pp. D760-D765
    [8]
    Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
    [9]
    Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
    [10]
    Baumberger, N., Baulcombe, D.C. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 11928-11933
    [11]
    Bentwich, I., Avniel, A., Karov, Y. et al. Identification of hundreds of conserved and nonconserved human microRNAs Nat. Genet., 37 (2005),pp. 766-770
    [12]
    Borsani, O., Zhu, J., Verslues, P.E. et al. Cell, 123 (2005),pp. 1279-1291
    [13]
    Croce, C.M. Causes and consequences of microRNA dysregulation in cancer Nat. Rev. Genet., 10 (2009),pp. 704-714
    [14]
    Cummins, J.M., Velculescu, V.E. Implications of micro-RNA profiling for cancer diagnosis Oncogene, 25 (2006),pp. 6220-6227
    [15]
    Czech, B., Hannon, G.J. Small RNA sorting: matchmaking for Argonautes Nat. Rev. Genet., 12 (2011),pp. 19-31
    [16]
    Djikeng, A., Shi, H., Tschudi, C. et al. RNA, 7 (2001),pp. 1522-1530
    [17]
    Emde, A.K., Grunert, M., Weese, D. et al. MicroRazerS: rapid alignment of small RNA reads Bioinformatics, 26 (2010),pp. 123-124
    [18]
    Fagegaltier, D., Bouge, A.L., Berry, B. et al. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 21258-21263
    [19]
    Fahlgren, N., Sullivan, C.M., Kasschau, K.D. et al. Computational and analytical framework for small RNA profiling by high-throughput sequencing RNA, 15 (2009),pp. 992-1002
    [20]
    Friedlander, M.R., Chen, W., Adamidi, C. et al. Discovering microRNAs from deep sequencing data using miRDeep Nat. Biotechnol., 26 (2008),pp. 407-415
    [21]
    Ghildiyal, M., Zamore, P.D. Small silencing RNAs: an expanding universe Nat. Rev. Genet., 10 (2009),pp. 94-108
    [22]
    Girard, A., Sachidanandam, R., Hannon, G.J. et al. A germline-specific class of small RNAs binds mammalian Piwi proteins Nature, 442 (2006),pp. 199-202
    [23]
    Griffiths-Jones, S., Saini, H.K., van Dongen, S. et al. miRBase: tools for microRNA genomics Nucleic Acids Res., 36 (2008),pp. D154-D158
    [24]
    Grimson, A., Srivastava, M., Fahey, B. et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals Nature, 455 (2008),pp. 1193-1197
    [25]
    Grivna, S.T., Pyhtila, B., Lin, H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 13415-13420
    [26]
    Hackenberg, M., Rodriguez-Ezpeleta, N., Aransay, A.M. miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments Nucleic Acids Res., 39 (2011),pp. W132-W138
    [27]
    Hendrix, D., Levine, M., Shi, W. miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data Genome Biol., 11 (2010),p. R39
    [28]
    Hou, H., Zhao, F., Zhou, L. et al. MagicViewer: integrated solution for next-generation sequencing data visualization and genetic variation detection and annotation Nucleic Acids Res., 38 (2010),pp. W732-W736
    [29]
    Jiang, Q., Wang, Y., Hao, Y. et al. miR2Disease: a manually curated database for microRNA deregulation in human disease Nucleic Acids Res., 37 (2009),pp. D98-D104
    [30]
    Jima, D.D., Zhang, J., Jacobs, C. et al. Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs Blood, 116 (2010),pp. e118-e127
    [31]
    Jones-Rhoades, M.W., Bartel, D.P., Bartel, B. MicroRNAs and their regulatory roles in plants Annu. Rev. Plant Biol., 57 (2006),pp. 19-53
    [32]
    Kapranov, P., Cheng, J., Dike, S. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription Science, 316 (2007),pp. 1484-1488
    [33]
    Karere, G.M., Glenn, J.P., VandeBerg, J.L. et al. Identification of baboon microRNAs expressed in liver and lymphocytes J. Biomed. Sci., 17 (2010),p. 54
    [34]
    Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D. et al. A pathogen-inducible endogenous siRNA in plant immunity Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 18002-18007
    [35]
    Ketting, R.F., Haverkamp, T.H., van Luenen, H.G. et al. Cell, 99 (1999),pp. 133-141
    [36]
    Kim, T.K., Hemberg, M., Gray, J.M. et al. Widespread transcription at neuronal activity-regulated enhancers Nature, 465 (2010),pp. 182-187
    [37]
    Kim, V.N. Small RNAs: classification, biogenesis, and function Mol. Cells, 19 (2005),pp. 1-15
    [38]
    Kiss, T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs EMBO J., 20 (2001),pp. 3617-3622
    [39]
    Klattenhoff, C., Theurkauf, W. Biogenesis and germline functions of piRNAs Development, 135 (2008),pp. 3-9
    [40]
    Krichevsky, A.M., King, K.S., Donahue, C.P. et al. A microRNA array reveals extensive regulation of microRNAs during brain development RNA, 9 (2003),pp. 1274-1281
    [41]
    Kuwabara, T., Hsieh, J., Nakashima, K. et al. A small modulatory dsRNA specifies the fate of adult neural stem cells Cell, 116 (2004),pp. 779-793
    [42]
    Kramer, M.F. Stem-Loop RT-qPCR for miRNAs Curr. Protoc. Mol. Biol. (Jul 2011)
    [43]
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W. et al. Identification of novel genes coding for small expressed RNAs Science, 294 (2001),pp. 853-858
    [44]
    Latronico, M.V., Condorelli, G. MicroRNAs and cardiac pathology Nat. Rev. Cardiol., 6 (2009),pp. 419-429
    [45]
    Lau, N.C., Seto, A.G., Kim, J. et al. Characterization of the piRNA complex from rat testes Science, 313 (2006),pp. 363-367
    [46]
    Lee, H.C., Chang, S.S., Choudhary, S. et al. qiRNA is a new type of small interfering RNA induced by DNA damage Nature, 459 (2009),pp. 274-277
    [47]
    Lee, R.C., Feinbaum, R.L., Ambros, V. Cell, 75 (1993),pp. 843-854
    [48]
    Lee, Y., Ahn, C., Han, J. et al. The nuclear RNase III Drosha initiates microRNA processing Nature, 425 (2003),pp. 415-419
    [49]
    Lewis, B.P., Burge, C.B., Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets Cell, 120 (2005),pp. 15-20
    [50]
    Li, C., Vagin, V.V., Lee, S. et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies Cell, 137 (2009),pp. 509-521
    [51]
    Li, S.C., Pan, C.Y., Lin, W.C. Bioinformatic discovery of microRNA precursors from human ESTs and introns BMC Genomics, 7 (2006),p. 164
    [52]
    Liu, C.G., Calin, G.A., Meloon, B. et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 9740-9744
    [53]
    Liu, C.G., Calin, G.A., Volinia, S. et al. MicroRNA expression profiling using microarrays Nat. Protoc., 3 (2008),pp. 563-578
    [54]
    Liu, Y., Mochizuki, K., Gorovsky, M.A. Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 1679-1684
    [55]
    McCormick, K.P., Willmann, M.R., Meyers, B.C. Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments Silence, 2 (2011),p. 2
    [56]
    Meister, G., Tuschl, T. Mechanisms of gene silencing by double-stranded RNA Nature, 431 (2004),pp. 343-349
    [57]
    Mette, M.F., van der Winden, J., Matzke, M. et al. Plant Physiol., 130 (2002),pp. 6-9
    [58]
    Metzker, M.L. Sequencing technologies – the next generation Nat. Rev. Genet., 11 (2010),pp. 31-46
    [59]
    Mochizuki, K., Fine, N.A., Fujisawa, T. et al. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena Cell, 110 (2002),pp. 689-699
    [60]
    Mochizuki, K., Gorovsky, M.A. Genes Dev., 18 (2004),pp. 2068-2073
    [61]
    Molnar, A., Schwach, F., Studholme, D.J. et al. Nature, 447 (2007),pp. 1126-1129
    [62]
    Moxon, S., Schwach, F., Dalmay, T. et al. A toolkit for analysing large-scale plant small RNA datasets Bioinformatics, 24 (2008),pp. 2252-2253
    [63]
    Okamura, K., Lai, E.C. Endogenous small interfering RNAs in animals Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 673-678
    [64]
    Pantano, L., Estivill, X., Marti, E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells Nucleic Acids Res., 38 (2010),p. e34
    [65]
    Peragine, A., Yoshikawa, M., Wu, G. et al. Genes Dev., 18 (2004),pp. 2368-2379
    [66]
    Pfeffer, S., Sewer, A., Lagos-Quintana, M. et al. Identification of microRNAs of the herpesvirus family Nat. Methods, 2 (2005),pp. 269-276
    [67]
    Reinhart, B.J., Slack, F.J., Basson, M. et al. Nature, 403 (2000),pp. 901-906
    [68]
    Ronen, R., Gan, I., Modai, S. et al. miRNAkey: a software for microRNA deep sequencing analysis Bioinformatics, 26 (2010),pp. 2615-2616
    [69]
    Rosa, A., Brivanlou, A.H. microRNAs in early vertebrate development Cell Cycle, 8 (2009),pp. 3513-3520
    [70]
    Ruby, J.G., Jan, C., Player, C. et al. Cell, 127 (2006),pp. 1193-1207
    [71]
    Schramke, V., Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing Science, 301 (2003),pp. 1069-1074
    [72]
    Sethupathy, P., Corda, B., Hatzigeorgiou, A.G. TarBase: a comprehensive database of experimentally supported animal microRNA targets RNA, 12 (2006),pp. 192-197
    [73]
    Severin, J., Waterhouse, A.M., Kawaji, H. et al. FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions Genome Biol., 10 (2009),p. R39
    [74]
    Shi, H., Djikeng, A., Tschudi, C. et al. Mol. Cell. Biol., 24 (2004),pp. 420-427
    [75]
    Shi, H., Ullu, E., Tschudi, C. Function of the Trypanosome Argonaute 1 protein in RNA interference requires the N-terminal RGG domain and arginine 735 in the Piwi domain J. Biol. Chem., 279 (2004),pp. 49889-49893
    [76]
    Sijen, T., Plasterk, R.H. Nature, 426 (2003),pp. 310-314
    [77]
    Siomi, M.C., Sato, K., Pezic, D. et al. PIWI-interacting small RNAs: the vanguard of genome defence Nat. Rev. Mol. Cell Biol., 12 (2011),pp. 246-258
    [78]
    Szittya, G., Moxon, S., Santos, D.M. et al. BMC Genomics, 9 (2008),p. 593
    [79]
    Tabara, H., Sarkissian, M., Kelly, W.G. et al. Cell, 99 (1999),pp. 123-132
    [80]
    Taft, R.J., Glazov, E.A., Cloonan, N. et al. Tiny RNAs associated with transcription start sites in animals Nat. Genet., 41 (2009),pp. 572-578
    [81]
    Taft, R.J., Simons, C., Nahkuri, S. et al. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans Nat. Struct. Mol. Biol., 17 (2010),pp. 1030-1034
    [82]
    Thomson, J.M., Parker, J., Perou, C.M. et al. A custom microarray platform for analysis of microRNA gene expression Nat. Methods, 1 (2004),pp. 47-53
    [83]
    Valoczi, A., Hornyik, C., Varga, N. et al. Sensitive and specific detection of microRNAs by Northern blot analysis using LNA-modified oligonucleotide probes Nucleic Acids Res., 32 (2004),p. e175
    [84]
    Vazquez, F. Trends Plant Sci., 11 (2006),pp. 460-468
    [85]
    Vazquez, F., Vaucheret, H., Rajagopalan, R. et al. Mol. Cell, 16 (2004),pp. 69-79
    [86]
    Wang, W.C., Lin, F.M., Chang, W.C. et al. miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression BMC Bioinformatics, 10 (2009),p. 328
    [87]
    Watanabe, T., Totoki, Y., Toyoda, A. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes Nature, 453 (2008),pp. 539-543
    [88]
    Witten, D., Tibshirani, R., Gu, S.G. et al. Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls BMC Biol., 8 (2010),p. 58
    [89]
    Xie, Z., Romano, D.M., Kovacs, D.M. et al. Effects of RNA interference-mediated silencing of gamma-secretase complex components on cell sensitivity to caspase-3 activation J. Biol. Chem., 279 (2004),pp. 34130-34137
    [90]
    Yang, J.H., Shao, P., Zhou, H. et al. deepBase: a database for deeply annotating and mining deep sequencing data Nucleic Acids Res., 38 (2010),pp. D123-D130
    [91]
    Zhang, J., Chiodini, R., Badr, A. et al. The impact of next-generation sequencing on genomics J. Genet. Genomics, 38 (2011),pp. 95-109
    [92]
    Zhang, Z., Yu, J., Li, D. et al. PMRD: plant microRNA database Nucleic Acids Res., 38 (2010),pp. D806-D813
    [93]
    Zhao, T., Li, G., Mi, S. et al. Genes Dev., 21 (2007),pp. 1190-1203
    [94]
    Zhu, E., Zhao, F., Xu, G. et al. mirTools: microRNA profiling and discovery based on high-throughput sequencing Nucleic Acids Res., 38 (2010),pp. W392-W397
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (82) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return