5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 9
Sep.  2011
Turn off MathJax
Article Contents

Cytological analysis and genetic control of rice anther development

doi: 10.1016/j.jgg.2011.08.001
More Information
  • Corresponding author: E-mail address: zhangdb@sjtu.edu.cn (Dabing Zhang)
  • Received Date: 2011-05-11
  • Accepted Date: 2011-08-01
  • Rev Recd Date: 2011-07-29
  • Available Online: 2011-08-10
  • Publish Date: 2011-09-20
  • Microsporogenesis and male gametogenesis are essential for the alternating life cycle of flowering plants between diploid sporophyte and haploid gametophyte generations. Rice (Oryza sativa) is the world’s major staple food, and manipulation of pollen fertility is particularly important for the demands to increase rice grain yield. Towards a better understanding of the mechanisms controlling rice male reproductive development, we describe here the cytological changes of anther development through 14 stages, including cell division, differentiation and degeneration of somatic tissues consisting of four concentric cell layers surrounding and supporting reproductive cells as they form mature pollen grains through meiosis and mitosis. Furthermore, we compare the morphological difference of anthers and pollen grains in both monocot rice and eudicot Arabidopsis thaliana. Additionally, we describe the key genes identified to date critical for rice anther development and pollen formation.
  • loading
  • [1]
    Ahlers, F., Lambertb, J., Wiermanna, R. Z. Naturforsch. C, 58 (2003),pp. 807-811
    [2]
    Armstrong, S.J., Caryl, A.P., Jones, J.H. et al. J. Cell Sci., 115 (2002),pp. 3645-3655
    [3]
    Ariizumi, T., Hatakeyama, K., Hinata, K. et al. Plant J., 39 (2004),pp. 170-181
    [4]
    Ariizumi, T., Hatakeyama, K., Hinata, K. et al. Plant Mol. Biol., 53 (2003),pp. 107-116
    [5]
    Ariizumi, T., Toriyama, K. Genetic regulation of sporopollenin synthesis and pollen exinedevelopment Annu. Rev. Plant Biol., 62 (2011),pp. 437-460
    [6]
    Aya, K., Ueguchi-Tanaka, M., Kndo, M. et al. Plant Cell, 21 (2009),pp. 1453-1472
    [7]
    Blackmore, S., Wortley, A.H., Skvarla, J.J. et al. Pollen wall development in flowering plants New Phytol., 174 (2007),pp. 483-498
    [8]
    Bowman, J.L., Drews, G.N., Meyerowitz, E.M. Plant Cell, 3 (1991),pp. 749-758
    [9]
    Canales, C., Bhatt, A.M., Scott, R. et al. Curr. Biol., 12 (2002),pp. 1718-1727
    [10]
    Caryl, A.P., Armstrong, S.J., Jones, G.H. et al. Chromosoma, 109 (2000),pp. 62-71
    [11]
    Chen, C., Xu, Y., Ma, H. et al. Cell biological characterization of male meiosis and pollen development in rice J. Integr. Plant Biol., 47 (2005),pp. 734-744
    [12]
    Dobritsa, A.A., Shrestha, J., Morant, M. et al. Plant Physiol., 151 (2009),pp. 574-589
    [13]
    Feng, J.H., Lu, Y.G., Liu, X.D. et al. Chin. J. Rice Sci., 15 (2001),pp. 21-28
    [14]
    Feng, X., Dickinson, H.G. Development, 137 (2010),pp. 2409-2416
    [15]
    Fujita, M., Horiuchi, Y., Ueda, Y. et al. Rice expression atlas in reproductive development Plant Cell Physiol, 51 (2010),pp. 2060-2081
    [16]
    Furness, C.A., Rudall, P.J. The tapetum and systematics in monocotyledons Bot. Rev., 64 (1998),pp. 201-239
    [17]
    Goetz, M., Godt, D.E., Guivarc’h, A. et al. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 6522-6527
    [18]
    Grass Phylogeny Working Group Phylogeny and subfamilial classification of the grasses (Poaceae) Ann. Mo. Bot. Gard., 88 (2001),pp. 373-457
    [19]
    Grienenberger, E., Kim, S.S., Lallemand, B. et al. Plant Cell, 22 (2010),pp. 4067-4083
    [20]
    Han, M.J., Jung, K.H., Yi, G. et al. Rice immature pollen 1 (RIP1) is a regulator of late pollen development Plant Cell Physiol, 47 (2006),pp. 1457-1472
    [21]
    Higgins, J.D., Sanchez-Moran, E., Armstrong, S.J. et al. Genes. Dev., 19 (2005),pp. 2488-2500
    [22]
    Hobo, T., Suwabe, K., Aya, K. et al. Various spatiotemporal expression profiles of anther-expressed genes in rice Plant Cell Physiol., 49 (2008),pp. 1417-1428
    [23]
    Hu, L., Liang, W., Yin, C. et al. Rice MADS3 regulates ROS homeostasis during late anther development Plant Cell, 23 (2011),pp. 515-533
    [24]
    Huang, M.D., Wei, F.J., Wu, C.C. et al. Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation Plant Physiol., 149 (2009),pp. 694-707
    [25]
    Huysmans, S., El-ghazaly, G., Smets, E. Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types Bot. Rev., 64 (1998),pp. 240-272
    [26]
    International Rice Genome Sequencing Project The map-based sequence of the rice genome Nature, 436 (2005),pp. 793-800
    [27]
    Itoh, J., Nonomura, K., Ikeda, K. et al. Rice plant development: from zygote to spikelet Plant Cell Physiol., 46 (2005),pp. 23-47
    [28]
    Ito, T., Shinozaki, K. Plant Cell Physiol., 43 (2002),pp. 1285-1292
    [29]
    Ito, T., Ng, K.H., Lim, T.S. et al. Plant Cell, 19 (2007),pp. 3516-3529
    [30]
    Ito, T., Wellmer, F., Yu, H. et al. Nature, 430 (2004),pp. 356-360
    [31]
    Jia, G., Liu, X., Owen, H.A. et al. Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase Proc. Nat. Acad. Sci. USA, 105 (2008),pp. 2220-2225
    [32]
    Jiao, Y., Tausta, S.L., Gandotra, N. et al. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies Nat. Genet., 41 (2009),pp. 258-263
    [33]
    Jung, K.H., An, G., Ronald, P.C. Towards a better bowl of rice: assigning function to tens of thousands of rice genes Nat. Rev. Genet., 9 (2008),pp. 91-101
    [34]
    Jung, K.H., Han, M.J., Lee, D.y. et al. Plant Cell, 18 (2006),pp. 3015-3032
    [35]
    Jung, K.H., Han, M.J., Lee, Y.S. et al. Plant Cell, 17 (2005),pp. 2705-2722
    [36]
    Kaneko, M., Inukai, Y., Ueguchi-Tanaka, M. et al. Plant Cell, 16 (2004),pp. 33-44
    [37]
    Kim, S.S., Grienenbergerb, E., Lallemandb, B. et al. Plant Cell, 22 (2010),pp. 4045-4066
    [38]
    Li, H., Liang, W., Yin, C. et al. Plant Physiol., 156 (2011),pp. 263-274
    [39]
    Li, H., Zhang, D. Biosynthesis of anther cuticle and pollen exine in rice Plant Signal. Behav., 5 (2010),pp. 1121-1123
    [40]
    Li, H., Pinot, F., Sauveplane, V. et al. Cytochrome P450 family member CYP704B2 catalyzes the{omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice Plant Cell, 22 (2010),pp. 173-190
    [41]
    Li, H., Yuan, Z., Vizcay-Barrena, G. et al. Plant Physiol., 156 (2011),pp. 615-630
    [42]
    Li, N., Zhang, D.S., Liu, H.S. et al. Plant Cell, 18 (2006),pp. 2999-3014
    [43]
    Li, X., Duan, X., Jiang, H. et al. Plant Physiol., 141 (2006),pp. 1167-1184
    [44]
    Li, X., Gao, X., Wei, Y. et al. Plant Cell, 23 (2011),pp. 1416-1434
    [45]
    Linder, H., Rudall, P. Evolutionary history of poales Annu. Rev. Ecol. Evol. Syst., 36 (2005),pp. 107-124
    [46]
    Liu, Z., Bao, W., Liang, W. et al. J. Integr. Plant Biol., 52 (2010),pp. 670-678
    [47]
    Ma, H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants Annu. Rev. Plant Biol., 56 (2005),pp. 393-434
    [48]
    Matsui, T., Omasa, K., Horie, T. Ann. Bot., 84 (1999),pp. 501-506
    [49]
    McCormick, S. Control of male gametophyte development Plant Cell, 16 (2004),pp. 142-153
    [50]
    Millar, A.A., Gubler, F. Plant Cell, 17 (2005),pp. 705-721
    [51]
    Morant, M., Jorgensen, K., Schaller, H. et al. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen Plant Cell, 19 (2007),pp. 1473-1487
    [52]
    Nonomura, K., Miyoshi, K., Eiguchi, M. et al. Plant Cell, 15 (2003),pp. 1728-1739
    [53]
    Nonomura, K., Morohoshi, A., Nakano, M. et al. Plant Cell, 19 (2007),pp. 2583-2594
    [54]
    Nonomura, K., Nakano, M., Eiguchi, M. et al. PAIR2 is essential for homologous chromosome synapsis in rice meiosis I J. Cell Sci., 119 (2006),pp. 217-225
    [55]
    Nonomura, K., Nakano, M., Fukuda, T. et al. Plant Cell, 16 (2004),pp. 1008-1020
    [56]
    Ouyang, S., Zhu, W., Hamilton, J. et al. The TIGR Rice Genome Annotation Resource: improvements and new features Nucleic Acids Res., 35 (2007),pp. 883-887
    [57]
    Ouyang, Y., Chen, J., Ding, J. et al. Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice Chin. Sci. Bull., 54 (2009),pp. 2332-2341
    [58]
    Ouyang, Y., Liu, Y., Zhang, Q. Hybrid sterility in plant: stories from rice Curr. Opin. Plant Biol., 13 (2010),pp. 186-192
    [59]
    Pacini, E., Guarnieri, M., Nepi, M. Pollen carbohydrates and water content during development, presentation, and dispersal: a short review Protoplasma, 228 (2006),pp. 73-77
    [60]
    Paxson-Sowders, D.M., Dodrill, C.H., Owen, H.A. et al. Plant Physiol., 127 (2001),pp. 1739-1749
    [61]
    Piffanelli, P., Ross, J.H., Murphy, D.J. Biogenesis and function of the lipidic structures of pollen grains Sex. Plant Reprod., 11 (1998),pp. 65-80
    [62]
    Sanders, P.M., Bui, A.Q., Weterings, K. et al. Sex. Plant Reprod., 11 (1999),pp. 297-322
    [63]
    Schiefthaler, U., Balasubramanian, S., Sieber, P. et al. Proc. Nat. Acad. Sci. USA, 96 (1999),pp. 11664-11669
    [64]
    Scott, R.J., Spielman, M., Dickinson, H.G. Stamen structure and function Plant Cell, 16 (2004),pp. S46-S60
    [65]
    Shi, J., Tan, H., Yu, X. et al. Plant Cell, 23 (2011),pp. 2225-2246
    [66]
    Sorensen, A.M., Krober, S., Unte, U.S. et al. Plant J, 33 (2003),pp. 413-423
    [67]
    Souza, C.A., Kim, S.S., Koch, S. et al. Plant Cell, 21 (2009),pp. 507-525
    [68]
    Suwabe, K., Suzuki, G., Takahashi, H. et al. Separated transcriptomes of male gametophyte and tapetum in rice: validity of a laser microdissection (LM) microarray Plant Cell Physiol., 49 (2008),pp. 1407-1416
    [69]
    Tang, L.K., Chu, H., Yip, W.K. et al. New Phytol., 181 (2009),pp. 576-587
    [70]
    Tang, X., Zhang, Z.Y., Zhang, W.J. et al. Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis Plant Physiol., 154 (2010),pp. 1855-1870
    [71]
    Vizcay-Barrena, G., Wilson, Z.A. J. Exp. Bot., 57 (2006),pp. 2709-2717
    [72]
    Wang, M., Wang, K., Tang, D. et al. The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice Plant Cell, 22 (2010),pp. 417-430
    [73]
    Wang, Y., Wang, Y.F., Zhang, D.B. J. Plant Physiol. Mol. Biol., 32 (2006),pp. 527-534
    [74]
    Wei, L.Q., Xu, W.Y., Deng, Z.Y. et al. BMC Genomics, 11 (2010),p. 338
    [75]
    Wilson, Z.A., Zhang, D.B. J. Exp. Bot., 60 (2009),pp. 1479-1492
    [76]
    Wilson, Z.A., Morroll, S.M., Dawson, J. et al. Plant J., 28 (2001),pp. 27-39
    [77]
    Wu, S.S., Platt, K.A., Ratnayake, C. et al. Proc. Nat. Acad. Sci. USA, 94 (1997),pp. 12711-12716
    [78]
    Xu, J., Yang, C., Yuan, Z. et al. Plant Cell, 22 (2010),pp. 91-107
    [79]
    Yamaguchi, T., Leeb, D.Y., Miyaoc, A. et al. Plant Cell, 18 (2006),pp. 15-28
    [80]
    Yang, S.L., Jiang, L., Puah, C.S. et al. Plant Physiol., 139 (2005),pp. 186-191
    [81]
    Yang, S.L., Xie, L.F., Mao, H.Z. et al. Plant Cell, 15 (2003),pp. 2792-2804
    [82]
    Yang, W.C., Ye, D., Xu, J. et al. Genes Dev., 13 (1999),pp. 2108-2117
    [83]
    Yang, X., Makaroff, C.A., Ma, H. Plant Cell, 15 (2003),pp. 1281-1295
    [84]
    Yanofsky, M.F., Ma, H., Bowman, J.L. et al. Nature, 346 (1990),pp. 35-39
    [85]
    Yuan, W., Li, X., Chang, Y. et al. Plant J, 59 (2009),pp. 303-315
    [86]
    Yuan, Z., Gao, S., Xue, D.W. et al. Plant Physiol., 149 (2009),pp. 235-244
    [87]
    Zanis, M.J. Grass spikelet genetics and duplicate gene comparisons Int. J. Plant Sci., 168 (2007),pp. 93-110
    [88]
    Zhang, D., Liang, W., Yin, C. et al. Plant Physiol, 154 (2010),pp. 149-162
    [89]
    Zhang, D., Wilson, Z.A. Stamen specification and anther development in rice Chin. Sci. Bull., 54 (2009),pp. 2342-2353
    [90]
    Zhang, D.S., Liang, W.Q., Yuan, Z. et al. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development Mol. Plant, 1 (2008),pp. 599-610
    [91]
    Zhang, H., Liang, W.Q., Yang, X.J. et al. Plant Cell, 22 (2010),pp. 672-689
    [92]
    Zhang, W., Sun, Y.L., Timofejeva, L. et al. Development, 133 (2006),pp. 3085-3095
    [93]
    Zhao, D.Z., Wang, G.F., Speal, B. et al. Genes Dev., 16 (2002),pp. 2021-2031
    [94]
    Zhao, X., Palma, J., Oane, R. et al. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers Plant J, 54 (2008),pp. 375-387
    [95]
    Zhou, S., Wang, Y., Lia, W. et al. Plant Cell, 23 (2011),pp. 111-129
    [96]
    Zhu, Q., Ramm, K., Shivakkumar, R. et al. Plant Physiol., 135 (2004),pp. 1514-1525
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (170) PDF downloads (13) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return