5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 7
Jul.  2011
Turn off MathJax
Article Contents

Evolutionary rewiring and reprogramming of bacterial transcription regulation

doi: 10.1016/j.jgg.2011.06.001
More Information
  • Corresponding author: E-mail address: qianw@im.ac.cn (Wei Qian)
  • Received Date: 2011-05-16
  • Accepted Date: 2011-06-07
  • Rev Recd Date: 2011-06-07
  • Available Online: 2011-06-17
  • Publish Date: 2011-07-20
  • Rewiring and reprogramming of transcriptional regulation took place during bacterial speciation. The mechanistic alterations among transcription factors, cis-regulatory elements and target genes confer bacteria novel ability to adapt to stochastic environmental changes. This process is critical to their survival, especially for bacterial pathogens subjected to accelerated evolution. In the past two decades, the investigators not only completed the sequences of numerous bacterial genomes, but also made great progress in understanding the molecular basis of evolution. Here we briefly reviewed the current knowledge on the mechanistic changes among orthologous, paralogous and xenogenic regulatory circuits, which were caused by genetic recombinations such as gene duplication, horizontal gene transfer, transposable elements and different genetic contexts. We also discussed the potential impact of this area on theoretical and applied studies of microbes.
  • loading
  • [1]
    Alon, U. Network motifs: theory and experimental approaches Nat. Rev. Genet., 8 (2007),pp. 450-461
    [2]
    Andersson, D.I., Hughes, D. Gene amplification and adaptive evolution in bacteria Annu. Rev. Genet., 43 (2009),pp. 167-195
    [3]
    Artsimovitch, I., Landick, R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 7090-7095
    [4]
    Bailey, M.J., Hughes, C., Koronakis, V. Mol. Microbiol., 26 (1997),pp. 845-851
    [5]
    Belogurov, G.A., Mooney, R.A., Svetlov, V. et al. Functional specialization of transcription elongation factors EMBO J., 28 (2009),pp. 112-122
    [6]
    Belogurov, G.A., Vassylyeva, M.N., Svetlov, V. et al. Structural basis for converting a general transcription factor into an operon-specific virulence regulator Mol. Cell, 26 (2007),pp. 117-129
    [7]
    Bijlsma, J.J., Groisman, E.A. Mol. Microbiol., 57 (2005),pp. 85-96
    [8]
    Booth, L.N., Tuch, B.B., Johnson, A.D. Intercalation of a new tier of transcription regulation into an ancient circuit Nature, 468 (2010),pp. 959-963
    [9]
    Boto, L. Horizontal gene transfer in evolution: facts and challenges Proc. Biol. Sci., 277 (2010),pp. 819-827
    [10]
    Britten, R.J., Davidson, E.H. Gene regulation for higher cells: a theory Science, 165 (1969),pp. 349-357
    [11]
    Browning, D.F., Busby, S.J. The regulation of bacterial transcription initiation Nat. Rev. Microbiol., 2 (2004),pp. 57-65
    [12]
    Cardinale, C.J., Washburn, R.S., Tadigotla, V.R. et al. Science, 320 (2008),pp. 935-938
    [13]
    Carroll, S.B. Evolution at two levels: on genes and form PLoS Biol., 3 (2005),p. e245
    [14]
    Carroll, S.B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution Cell, 134 (2008),pp. 25-36
    [15]
    Checa, S.K., Espariz, M., Audero, M.E. et al. Bacterial sensing of and resistance to gold salts Mol. Microbiol., 63 (2007),pp. 1307-1318
    [16]
    Cooper, T.F., Remold, S.K., Lenski, R.E. et al. PLoS Genet., 4 (2008),p. e35
    [17]
    Craven, S.H., Neidle, E.L. Double trouble: medical implications of genetic duplication and amplification in bacteria Future Microbiol., 2 (2007),pp. 309-321
    [18]
    Darwin, C.
    [19]
    de Hoon, M.J., Eichenberger, P., Vitkup, D. Hierarchical evolution of the bacterial sporulation network Curr. Biol., 20 (2010),pp. R735-R745
    [20]
    Dean, A.M., Thornton, J.W. Mechanistic approaches to the study of evolution: the functional synthesis Nat. Rev. Genet., 8 (2007),pp. 675-688
    [21]
    Dowell, R.D. Transcription factor binding variation in the evolution of gene regulation Trends Genet., 26 (2010),pp. 468-475
    [22]
    Fass, E., Groisman, E.A. Curr. Opin. Microbiol., 12 (2009),pp. 199-204
    [23]
    Feng, X., Oropeza, R., Kenney, L.J. Mol. Microbiol., 48 (2003),pp. 1131-1143
    [24]
    Feschotte, C. Transposable elements and the evolution of regulatory networks Nat. Rev. Genet., 9 (2008),pp. 397-405
    [25]
    Gehring, W.J., Ikeo, K. Pax 6: mastering eye morphogenesis and eye evolution Trends Genet., 15 (1999),pp. 371-377
    [26]
    Gelfand, M.S. Evolution of transcriptional regulatory networks in microbial genomes Curr. Opin. Struct. Biol., 16 (2006),pp. 420-429
    [27]
    Gevers, D., Vandepoele, K., Simillon, C. et al. Gene duplication and biased functional retention of paralogs in bacterial genomes Trends Microbiol., 12 (2004),pp. 148-154
    [28]
    Groisman, E.A., Mouslim, C. Sensing by bacterial regulatory systems in host and non-host environments Nat. Rev. Microbiol., 4 (2006),pp. 705-709
    [29]
    Gunn, J.S., Lim, K.B., Krueger, J. et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance Mol. Microbiol., 27 (1998),pp. 1171-1182
    [30]
    Hale, C.R., Zhao, P., Olson, S. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell, 139 (2009),pp. 945-956
    [31]
    Herpin, A., Braasch, I., Kraeussling, M. et al. PLoS Genet., 6 (2010),p. e1000844
    [32]
    Hoekstra, H.E., Coyne, J.A. The locus of evolution: evo devo and the genetics of adaptation Evolution, 61 (2007),pp. 995-1016
    [33]
    Jackson, R.W., Johnson, L.J., Clarke, S.R. et al. Bacterial pathogen evolution: breaking news Trends Genet., 27 (2010),pp. 32-40
    [34]
    Jordan, I.K., Rogozin, I.B., Glazko, G.V. et al. Origin of a substantial fraction of human regulatory sequences from transposable elements Trends Genet., 19 (2003),pp. 68-72
    [35]
    Juhas, M., van der Meer, J.R., Gaillard, M. et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution FEMS Microbiol. Rev., 33 (2009),pp. 376-393
    [36]
    Kato, A., Mitrophanov, A.Y., Groisman, E.A. A connector of two-component regulatory systems promotes signal amplification and persistence of expression Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 12063-12068
    [37]
    Koonin, E.V., Makarova, K.S., Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification Annu. Rev. Microbiol., 55 (2001),pp. 709-742
    [38]
    Kunarso, G., Chia, N.Y., Jeyakani, J. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells Nat. Genet., 42 (2010),pp. 631-634
    [39]
    Lind, P.A., Tobin, C., Berg, O.G. et al. Compensatory gene amplification restores fitness after inter-species gene replacements Mol. Microbiol., 75 (2010),pp. 1078-1089
    [40]
    Lozada-Chavez, I., Janga, S.C., Collado-Vides, J. Bacterial regulatory networks are extremely flexible in evolution Nucleic Acids Res., 34 (2006),pp. 3434-3445
    [41]
    Lucchini, S., Rowley, G., Goldberg, M.D. et al. H-NS mediates the silencing of laterally acquired genes in bacteria PLoS Pathog., 2 (2006),p. e81
    [42]
    Luque, I., Andujar, A., Jia, L. et al. Mol. Microbiol., 60 (2006),pp. 1276-1288
    [43]
    Mandel, M.J., Wollenberg, M.S., Stabb, E.V. et al. A single regulatory gene is sufficient to alter bacterial host range Nature, 458 (2009),pp. 215-218
    [44]
    Martinez-Nunez, M.A., Perez-Rueda, E., Gutierrez-Rios, R.M. et al. New insights into the regulatory networks of paralogous genes in bacteria Microbiology, 156 (2010),pp. 14-22
    [45]
    Ng, W.L., Bassler, B.L. Bacterial quorum-sensing network architectures Annu. Rev. Genet., 43 (2009),pp. 197-222
    [46]
    Ochman, H., Lawrence, J.G., Groisman, E.A. Lateral gene transfer and the nature of bacterial innovation Nature, 405 (2000),pp. 299-304
    [47]
    Ohno, S.
    [48]
    Osborne, S.E., Walthers, D., Tomljenovic, A.M. et al. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 3982-3987
    [49]
    Paytubi, S., Madrid, C., Forns, N. et al. Mol. Microbiol., 54 (2004),pp. 251-263
    [50]
    Perez Audero, M.E., Podoroska, B.M., Ibanez, M.M. et al. Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors Mol. Microbiol., 78 (2010),pp. 853-865
    [51]
    Perez, J.C., Groisman, E.A. Transcription factor function and promoter architecture govern the evolution of bacterial regulons Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 4319-4324
    [52]
    Perez, J.C., Groisman, E.A. Evolution of transcriptional regulatory circuits in bacteria Cell, 138 (2009),pp. 233-244
    [53]
    Perez, J.C., Latifi, T., Groisman, E.A. J. Biol. Chem., 283 (2008),pp. 10773-10783
    [54]
    Perez, J.C., Shin, D., Zwir, I. et al. PLoS Genet., 5 (2009),p. e1000428
    [55]
    Peter, I.S., Davidson, E.H. Evolution of gene regulatory networks controlling body plan development Cell, 144 (2011),pp. 970-985
    [56]
    Petersen, C., Moller, L.B., Valentin-Hansen, P. J. Biol. Chem., 277 (2002),pp. 31373-31380
    [57]
    Pontel, L.B., Audero, M.E., Espariz, M. et al. Mol. Microbiol., 66 (2007),pp. 814-825
    [58]
    Price, M.N., Dehal, P.S., Arkin, A.P. Genome Biol., 9 (2008),p. R4
    [59]
    Qian, W., Han, Z.J., He, C. Mol. Plant Microbe Interact., 21 (2008),pp. 151-161
    [60]
    Rhodius, V.A., Suh, W.C., Nonaka, G. et al. PLoS Biol., 4 (2006),p. e2
    [61]
    Rodionov, D.A., Mironov, A.A., Gelfand, M.S. Conservation of the biotin regulon and the BirA regulatory signal in Eubacteria and Archaea Genome Res., 12 (2002),pp. 1507-1516
    [62]
    Sandegren, L., Andersson, D.I. Bacterial gene amplification: implications for the evolution of antibiotic resistance Nat. Rev. Microbiol., 7 (2009),pp. 578-588
    [63]
    Sharma, C.M., Hoffmann, S., Darfeuille, F. et al. Nature, 464 (2010),pp. 250-255
    [64]
    Soo, V.W., Hanson-Manful, P., Patrick, W.M. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 1484-1489
    [65]
    Sun, X., Dennis, J.J. J. Bacteriol., 191 (2009),pp. 6773-6777
    [66]
    Toledo-Arana, A., Dussurget, O., Nikitas, G. et al. Nature, 459 (2009),pp. 950-956
    [67]
    Tomljenovic-Berube, A.M., Mulder, D.T., Whiteside, M.D. et al. PLoS Genet., 6 (2010),p. e1000875
    [68]
    Tu, K.C., Bassler, B.L. Genes Dev., 21 (2007),pp. 221-233
    [69]
    Tu, K.C., Long, T., Svenningsen, S.L. et al. Mol. Cell, 37 (2010),pp. 567-579
    [70]
    van Hijum, S.A., Medema, M.H., Kuipers, O.P. Mechanisms and evolution of control logic in prokaryotic transcriptional regulation Microbiol. Mol. Biol. Rev., 73 (2009),pp. 481-509
    [71]
    Wilson, M.D., Odom, D.T. Evolution of transcriptional control in mammals Curr. Opin. Genet. Dev., 19 (2009),pp. 579-585
    [72]
    Wilson, M.D., Barbosa-Morais, N.L., Schmidt, D. et al. Species-specific transcription in mice carrying human chromosome 21 Science, 322 (2008),pp. 434-438
    [73]
    Winfield, M.D., Groisman, E.A. Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 17162-17167
    [74]
    Winfield, M.D., Latifi, T., Groisman, E.A. J. Biol. Chem., 280 (2005),pp. 14765-14772
    [75]
    Yip, E.S., Grublesky, B.T., Hussa, E.A. et al. Mol. Microbiol., 57 (2005),pp. 1485-1498
    [76]
    Zhang, J. Evolution by gene duplication: an update Trends Ecol. Evol., 16 (2003),pp. 292-298
    [77]
    Zhang, Z., A novel mechanism of transposon-mediated gene activation PLoS Genet., 5 (2009),p. e1000689
    [78]
    Zhang, Z., A mechanism of transposon-mediated directed mutation Mol. Microbiol., 74 (2009),pp. 29-43
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return