5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 6
Jun.  2011
Turn off MathJax
Article Contents

Development of pyrF-based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica

doi: 10.1016/j.jgg.2011.05.003
More Information
  • Corresponding author: E-mail address: xiangh@sun.im.ac.cn (Hua Xiang)
  • Received Date: 2011-04-08
  • Accepted Date: 2011-05-03
  • Rev Recd Date: 2011-05-03
  • Available Online: 2011-05-17
  • Publish Date: 2011-06-20
  • The haloarchaea Haloferax mediterranei and Haloarcula hispanica are both polyhydroxyalkanoate producers in the domain Archaea, and they are becoming increasingly attractive for research and biotechnology due to their unique genetic and metabolic features. To accelerate their genome-level genetic and metabolic analyses, we have developed specific and highly efficient gene knockout systems for these two haloarchaea. These gene knockout systems consist of a suicide plasmid vector with the pyrF gene as the selection marker and a uracil auxotrophic haloarchaeon (▵pyrF) as the host. For in-frame deletion of a target gene, the suicide plasmid carrying the flanking region of the target gene was transferred into the corresponding ▵pyrF host. After positive selection of the single-crossover integration recombinants (pop-in) on AS-168SY medium without uracil and counterselection of the double-crossover pyrF-excised recombinants (pop-out) with 5-fluoroorotic acid (5-FOA), the target gene knockout mutants were confirmed by PCR and Southern blot analysis. We have demonstrated the effectiveness of these systems by knocking out thecrtB gene which encodes a phytoene synthase in these haloarchaea. In conclusion, these well-developed knockout systems would greatly accelerate the functional genomic research of these halophilic archaea.
  • loading
  • [1]
    Angelov, A., Liebl, W. J. Biotechnol., 126 (2006),pp. 3-10
    [2]
    Bell, S.D., Jackson, S.P. Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features Trends Microbiol., 6 (1998),pp. 222-228
    [3]
    Bitan-Banin, G., Ortenberg, R., Mevarech, M. J. Bacteriol., 185 (2003),pp. 772-778
    [4]
    Boeke, J.D., LaCroute, F., Fink, G.R. A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance Mol. Gen. Genet., 197 (1984),pp. 345-346
    [5]
    Burland, T.G. DNASTAR’s Lasergene sequence analysis software Methods Mol. Biol., 132 (2000),pp. 71-91
    [6]
    Cardenas, J.P., Valdes, J., Quatrini, R. et al. Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms Appl. Microbiol. Biotechnol., 88 (2010),pp. 605-620
    [7]
    Cline, S.W., Lam, W.L., Charlebois, R.L. et al. Transformation methods for halophilic archaebacteria Can. J. Microbiol., 35 (1989),pp. 148-152
    [8]
    DasSarma, S., Fleischmann, E.M.
    [9]
    Falb, M., Muller, K., Konigsmaier, L. et al. Metabolism of halophilic archaea Extremophiles, 12 (2008),pp. 177-196
    [10]
    Hammelmann, M., Soppa, J. J. Microbiol. Methods, 75 (2008),pp. 201-204
    [11]
    Han, J., Lu, Q., Zhou, L. et al. Appl. Environ. Microbiol., 73 (2007),pp. 6058-6065
    [12]
    Han, J., Lu, Q., Zhou, L. et al. Appl. Environ. Microbiol., 75 (2009),pp. 6168-6175
    [13]
    Han, J., Hou, J., Liu, H. et al. Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases Appl. Environ. Microb., 76 (2010),pp. 7811-7819
    [14]
    Juez, G., Rodriguezvalera, F., Ventosa, A. et al. Syst. Appl. Microbiol., 8 (1986),pp. 75-79
    [15]
    Kennedy, S.P., Ng, W.V., Salzberg, S.L. et al. Genome Res., 11 (2001),pp. 1641-1650
    [16]
    Khomyakova, M., Bukmez, O., Thomas, L.K. et al. A methylaspartate cycle in haloarchaea Science, 331 (2011),pp. 334-337
    [17]
    Leigh, J.A., Albers, S.V., Atomi, H. et al. FEMS Microbiol. Rev (2011)
    [18]
    Liu, Y., Whitman, W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea Ann. N.Y. Acad. Sci., 1125 (2008),pp. 171-189
    [19]
    Lu, Q., Han, J., Zhou, L. et al. J. Bacteriol., 190 (2008),pp. 4173-4180
    [20]
    Peck, R.F., DasSarma, S., Krebs, M.P. Mol. Microbiol., 35 (2000),pp. 667-676
    [21]
    Rodriguez-Valera, F., Ruiz-Berraquero, F., Ramos-Cormenzana, A. Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources J. Gen. Microbiol., 119 (1980),pp. 535-538
    [22]
    Sambrook, J., Fritsch, E.F., Maniatis, T.
    [23]
    Sieiro, C., Poza, M., de Miguel, T. et al. Genetic basis of microbial carotenogenesis Int. Microbiol., 6 (2003),pp. 11-16
    [24]
    Steinbuchel, A., Lutke-Eversloh, T. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms Biochem. Eng. J., 16 (2003),pp. 81-96
    [25]
    Trivedi, S., Gehlot, H.S., Rao, S.R. Protein thermostability in Archaea and Eubacteria Genet. Mol. Res., 5 (2006),pp. 816-827
    [26]
    Vieille, C., Zeikus, G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability Microbiol. Mol. Biol. Rev., 65 (2001),pp. 1-43
    [27]
    Woese, C.R., Kandler, O., Wheelis, M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 4576-4579
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (67) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return