[1] |
Angelov, A., Liebl, W. J. Biotechnol., 126 (2006),pp. 3-10
|
[2] |
Bell, S.D., Jackson, S.P. Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features Trends Microbiol., 6 (1998),pp. 222-228
|
[3] |
Bitan-Banin, G., Ortenberg, R., Mevarech, M. J. Bacteriol., 185 (2003),pp. 772-778
|
[4] |
Boeke, J.D., LaCroute, F., Fink, G.R. A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance Mol. Gen. Genet., 197 (1984),pp. 345-346
|
[5] |
Burland, T.G. DNASTAR’s Lasergene sequence analysis software Methods Mol. Biol., 132 (2000),pp. 71-91
|
[6] |
Cardenas, J.P., Valdes, J., Quatrini, R. et al. Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms Appl. Microbiol. Biotechnol., 88 (2010),pp. 605-620
|
[7] |
Cline, S.W., Lam, W.L., Charlebois, R.L. et al. Transformation methods for halophilic archaebacteria Can. J. Microbiol., 35 (1989),pp. 148-152
|
[8] |
DasSarma, S., Fleischmann, E.M.
|
[9] |
Falb, M., Muller, K., Konigsmaier, L. et al. Metabolism of halophilic archaea Extremophiles, 12 (2008),pp. 177-196
|
[10] |
Hammelmann, M., Soppa, J. J. Microbiol. Methods, 75 (2008),pp. 201-204
|
[11] |
Han, J., Lu, Q., Zhou, L. et al. Appl. Environ. Microbiol., 73 (2007),pp. 6058-6065
|
[12] |
Han, J., Lu, Q., Zhou, L. et al. Appl. Environ. Microbiol., 75 (2009),pp. 6168-6175
|
[13] |
Han, J., Hou, J., Liu, H. et al. Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases Appl. Environ. Microb., 76 (2010),pp. 7811-7819
|
[14] |
Juez, G., Rodriguezvalera, F., Ventosa, A. et al. Syst. Appl. Microbiol., 8 (1986),pp. 75-79
|
[15] |
Kennedy, S.P., Ng, W.V., Salzberg, S.L. et al. Genome Res., 11 (2001),pp. 1641-1650
|
[16] |
Khomyakova, M., Bukmez, O., Thomas, L.K. et al. A methylaspartate cycle in haloarchaea Science, 331 (2011),pp. 334-337
|
[17] |
Leigh, J.A., Albers, S.V., Atomi, H. et al. FEMS Microbiol. Rev (2011)
|
[18] |
Liu, Y., Whitman, W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea Ann. N.Y. Acad. Sci., 1125 (2008),pp. 171-189
|
[19] |
Lu, Q., Han, J., Zhou, L. et al. J. Bacteriol., 190 (2008),pp. 4173-4180
|
[20] |
Peck, R.F., DasSarma, S., Krebs, M.P. Mol. Microbiol., 35 (2000),pp. 667-676
|
[21] |
Rodriguez-Valera, F., Ruiz-Berraquero, F., Ramos-Cormenzana, A. Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources J. Gen. Microbiol., 119 (1980),pp. 535-538
|
[22] |
Sambrook, J., Fritsch, E.F., Maniatis, T.
|
[23] |
Sieiro, C., Poza, M., de Miguel, T. et al. Genetic basis of microbial carotenogenesis Int. Microbiol., 6 (2003),pp. 11-16
|
[24] |
Steinbuchel, A., Lutke-Eversloh, T. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms Biochem. Eng. J., 16 (2003),pp. 81-96
|
[25] |
Trivedi, S., Gehlot, H.S., Rao, S.R. Protein thermostability in Archaea and Eubacteria Genet. Mol. Res., 5 (2006),pp. 816-827
|
[26] |
Vieille, C., Zeikus, G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability Microbiol. Mol. Biol. Rev., 65 (2001),pp. 1-43
|
[27] |
Woese, C.R., Kandler, O., Wheelis, M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 4576-4579
|