[1] |
Azuma, Y., Hosoyama, A., Matsutani, M. et al. Nucleic Acid Res., 37 (2009),pp. 5768-5783
|
[2] |
Bugaytsova, Z., Lindström, E.B. Eur. J. Biochem., 271 (2004),pp. 272-280
|
[3] |
Chen, Z.W., Liu, Y.Y., Wu, J.F. et al. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates Appl. Microbiol. Biotechnol., 74 (2007),pp. 688-698
|
[4] |
Delcher, A.L., Bratke, K.A., Powers, E.C. et al. Identifying bacterial genes and endosymbiont DNA with Glimmer Bioinformatics, 23 (2007),pp. 673-679
|
[5] |
Dopson, M., Lindström, E.B. Appl. Environ. Microbiol., 65 (1999),pp. 36-40
|
[6] |
Dopson, M., Lindström, E.B., Hallberg, K.B. Extremophiles, 6 (2002),pp. 123-129
|
[7] |
Edwards, K.J., Bond, P.L., Banfield, J.F. Environ. Microbiol., 2 (2000),pp. 324-332
|
[8] |
Esparza, M., Cardenas, J.P., Bowien, B. et al. BMC Microbiol., 10 (2010),pp. 229-244
|
[9] |
Fischer, F., Wolters, D., Rogner, M. et al. Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection Mol. Cell. Proteomics, 5 (2006),pp. 444-453
|
[10] |
Golemis, E.A., Adams, P.D.
|
[11] |
Haussmann, U., Qi, S.-W., Wolters, D. et al. Proteomics, 9 (2009),pp. 3635-3651
|
[12] |
Kamimura, K., Okabayashi, A., Kikumoto, M. et al. Analysis of iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage from a Japanese pyrite mine by use of ribulose-1, 5-bisphosphate carboxylase/oxygenase large-subunit gene J. Biosci. Bioeng., 109 (2010),pp. 244-248
|
[13] |
Kelly, D.P., Wood, A.P. Int. J. Syst. Evol. Microbiol., 50 (2002),pp. 511-516
|
[14] |
Liu, Y.Y., Guo, X., Jiang, C.Y. Microbial diversity and characteristics of cultivable microorganisms in bioleaching reactors Acta Microbiol. Sin., 50 (2010),pp. 244-250
|
[15] |
Mangold, S., Valdes, J., Holmés, D.S. et al. Front. Microbiol., 2 (2011),pp. 1-18
|
[16] |
Marmur, J. A procedure for the isolation of deoxyribonucleic acid from microorganisms J. Mol. Biol., 3 (1961),pp. 208-218
|
[17] |
Rzhepishevska, O.I., Valdés, J., Marcinkeviciene, L. et al. Appl. Environ. Microbiol., 73 (2007),pp. 7367-7372
|
[18] |
Silverman, M.P., Lundgren, D.G. J. Bacteriol., 77 (1959),pp. 642-647
|
[19] |
Spolaore, P., Joulian, C., Gouin, J. et al. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors Appl. Microbiol. Biotechnol., 89 (2011),pp. 441-448
|
[20] |
Tian, K.L., Lin, J.Q., Liu, X.M. et al. Biotechnol. Lett., 25 (2003),pp. 749-754
|
[21] |
Valdes, J., Quatrini, R., Hallberg, K. et al. J. Bacteriol., 191 (2009),pp. 5877-5878
|
[22] |
Watling, H.R. The bioleaching of sulphide minerals with emphasis on copper sulphides: a review Hydrometalllurgy, 84 (2006),pp. 81-108
|
[23] |
Xia, L., Dai, S., Yin, C. et al. J. Ind. Microbiol. Biotechnol., 36 (2009),pp. 845-851
|
[24] |
Zeng, W., Qiu, G., Zhou, H. et al. Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate Bioresour. Technol., 101 (2010),pp. 7079-7086
|
[25] |
Zhou, H.B., Zeng, W.M., Yang, Z.F. et al. Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor Bioresour. Technol., 100 (2009),pp. 515-520
|