5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 5
May  2011
Turn off MathJax
Article Contents

A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae

doi: 10.1016/j.jgg.2011.03.010
More Information
  • Corresponding author: E-mail address: beishangd@163.com (Jianli Wu)
  • Received Date: 2011-01-25
  • Accepted Date: 2011-03-28
  • Rev Recd Date: 2011-03-23
  • Available Online: 2011-04-08
  • Publish Date: 2011-05-20
  • Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases. Using map-based strategy and in silico approach we isolated a new rice (Oryza sativa L.) blast resistance allele of Pid3, designated Pi25, from a stable blast resistance cultivar Gumei2. Over-expression analysis and complementation test showed thatPi25 conferred blast resistance to M. oryzae isolate js001-20. Sequence analysis showed that Pi25 was an intronless gene of 2772 nucleotides with single nucleotide substitution in comparison to Pid3 at the nucleotide position 459 and predicatively encoded a typical coiled coil–nucleotide binding site–leucine rich repeat (CC–NBS–LRR) protein of 924 amino acid residuals with 100% identity to Pid3 putative protein. The susceptible allele pi25 in Nipponbare contained a nonsense mutation at the nucleotide position 2209 resulting in a truncated protein with 736 amino acid residuals. In addition, 14 nucleotide substitutions resulting in 10 amino acid substitutions were identified between Pi25 and pi25 upstream the premature stop codon in the susceptible allele. Although the mechanism of Pi25/Pid3-mediated resistance needs to be further investigated, the isolation of the allele would facilitate the utilization of Pi25/Pid3 in rice blast resistance breeding program via transgenic approach and marker assisted selection.
  • loading
  • [1]
    Ahn, S.W.
    [2]
    Ashikawa, I., Hayashi, N., Yamane, H. et al. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance Genetics, 180 (2008),pp. 2267-2276
    [3]
    Bai, J., Pennill, L.A., Ning, J. et al. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals Genome Res., 12 (2002),pp. 1871-1884
    [4]
    Baker, B., Zambryski, P., Staskawicz, B. et al. Signalling in plant-microbe interactions Science, 276 (1997),pp. 726-733
    [5]
    Belkhadir, Y., Subramaniam, R., Dangl, J.L. Plant disease resistance protein signalling: NBS-LRR proteins and their partners Curr. Opin. Plant Biol., 7 (2004),pp. 391-399
    [6]
    Bent, A.F. Plant disease resistance genes: function meets structure Plant Cell, 8 (1996),pp. 1757-1771
    [7]
    Bonman, J.M., Vergael de Dios, T.I., Khin, M.M. Plant Dis., 70 (1986),pp. 767-769
    [8]
    Bryan, G.T., Wu, K.S., Farrall, L. et al. Plant Cell, 12 (2000),pp. 2033-2045
    [9]
    Chen, X.W., Shang, J.J., Chen, D.X. et al. A B-lectin receptor kinase gene conferring rice blast resistance Plant J., 46 (2006),pp. 794-804
    [10]
    Couch, B.C., Kohn, L.M. Mycologia, 94 (2002),pp. 683-693
    [11]
    Dangl, J.L., Jones, J.D.G. Plant pathogens and integrated defence responses to infection Nature, 411 (2001),pp. 826-833
    [12]
    Fukuoka, S., Saka, N., Koga, H. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice Science, 325 (2009),pp. 998-1001
    [13]
    Goff, S.A., Ricke, D., Lan, T.-H. Science, 296 (2002),pp. 92-100
    [14]
    Hammond-Kosack, K.E., Jones, J.D.G. Plant disease resistance genes Annu. Rev. Plant Physiol. Plant Mol. Biol., 48 (1997),pp. 575-607
    [15]
    Hayashi, K., Yoshida, H. Plant J., 57 (2009),pp. 413-425
    [16]
    Hayashi, K., Yoshida, H., Ashikawa, I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes Theor. Appl. Genet., 113 (2006),pp. 251-260
    [17]
    Hulbert, S.H., Webb, C.A., Smith, S.M. et al. Resistance gene complexes: evolution and utilization Annu. Rev. Phytopathol., 39 (2001),pp. 285-312
    [18]
    Jeung, J.U., Kim, B.R., Cho, Y.C. et al. Theor. Appl. Genet., 115 (2007),pp. 1163-1177
    [19]
    Kumar, S., Nei, M., Dudley, J. et al. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences Brief Bioinform., 9 (2008),pp. 299-306
    [20]
    Lee, S.K., Song, M.Y., Seo, Y.S. et al. Genetics, 181 (2009),pp. 1627-1638
    [21]
    Lin, F., Chen, S., Que, Z.Q. et al. Genetics, 177 (2007),pp. 1871-1880
    [22]
    Liu, J.L., Liu, X.L., Dai, L.Y. et al. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants J. Genet. Genomics, 34 (2007),pp. 765-776
    [23]
    Liu, X.Q., Lin, F., Wang, L. et al. Genetics, 176 (2007),pp. 2541-2549
    [24]
    Liu, W.Q., Li, X.X., Wang, S.H. et al. Research progress in blast resistance genes in rice Hybrid Rice, 24 (2009),pp. 1-7
    [25]
    Lu, Y.J., Zheng, K.L. A simple method for isolation of rice DNA Chinese J. Rice Sci., 6 (1992),pp. 47-48
    [26]
    Martin, G.B., Bogdanove, A.J., Sessa, G. Understanding the functions of plant disease resistance proteins Annu. Rev. Plant Physiol., 54 (2003),pp. 23-61
    [27]
    Meyers, B.C., Shen, K.A., Rohani, P. et al. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection Plant Cell, 10 (1998),pp. 1833-1846
    [28]
    Meyers, B.C., Dickerman, A.W., Michelmore, R.W. et al. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily Plant J., 20 (1999),pp. 317-332
    [29]
    Murray, M.G., Thompson, W.F. Rapid isolation of high molecular weight plant DNA Nucleic Acids Res., 8 (1980),pp. 4321-4325
    [30]
    Okuyama, Y., Kanzaki, H., Abe, A. et al. A multi-faceted genomics approach allows the isolation of rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes Plant J (2011)
    [31]
    Ou, S.H.
    [32]
    Pan, Q.L., Wendel, J., Fluhr, R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes J. Mol. Evol., 50 (2000),pp. 203-213
    [33]
    Qu, S.H., Liu, G.F., Zhou, B. et al. Genetics, 172 (2006),pp. 1901-1914
    [34]
    Shang, J.J., Tao, Y., Chen, X.W. et al. Genetics, 182 (2009),pp. 1303-1311
    [35]
    van der Biezen, E.A., Jones, J.D.G. The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals Curr. Biol., 8 (1998),pp. 226-227
    [36]
    van der Biezen, E.A., Jones, J.D.G. Plant disease resistance proteins and the gene-for-gene concept Trends Biochem. Sci., 23 (1998),pp. 454-456
    [37]
    Wang, Z.X., Yano, M., Yamanouch, U. et al. Plant J., 19 (1999),pp. 55-64
    [38]
    Wilson, R.A., Talbot, N.J. Nat. Rev. Microbiol., 7 (2009),pp. 185-195
    [39]
    Wu, J.L., Chai, R.Y., Fan, Y.Y. et al. Clustering of major genes conferring blast resistance in blast resistance rice cultivar Gumei 2 Rice Sci., 11 (2004),pp. 161-164
    [40]
    Wu, J.L., Fan, Y.Y., Li, D.B. et al. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates Theor. Appl. Genet., 111 (2005),pp. 50-56
    [41]
    Zhou, B., Qu, S.H., Liu, G.F. et al. Mol. Plant–Microbe Interact., 11 (2006),pp. 1216-1228
    [42]
    Zhu, Z.G., Xiao, H., Fu, Y.P. et al. Construction of transgenic rice populations by inserting the maize transposon Ac/Ds and genetic analysis for several mutants Chinese J. Biotechnol., 17 (2001),pp. 288-292
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (53) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return