5.9
CiteScore
5.9
Impact Factor
Volume 38 Issue 1
Jan.  2011
Turn off MathJax
Article Contents

RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice

doi: 10.1016/j.jcg.2010.12.001
More Information
  • Corresponding author: E-mail address: gfzh@bnu.edu.cn (Genfa Zhang); E-mail address: ccchu@genetics.ac.cn (Chengcai Chu)
  • Received Date: 2010-10-11
  • Accepted Date: 2010-10-20
  • Rev Recd Date: 2010-10-17
  • Available Online: 2011-02-19
  • Publish Date: 2011-01-20
  • Lesion mimic is necrotic lesions on plant leaf or stem in the absence of pathogenic infection, and its exact biological mechanism is varied. By a large-scale screening of our T-DNA mutant population, we identified a mutant rice lesion initiation 1 (rlin1), which was controlled by a single nuclear recessive gene. Map-based cloning revealed that RLIN1 encoded a putative coproporphyrinogen III oxidase in tetrapyrrole biosynthesis pathway. Sequencing results showed that a G to T substitution occurred in the second exon of RLIN1 and led to a missense mutation from Asp to Tyr. Ectopic expression of RLIN1 could rescue rlin1 lesion mimic phenotype. Histochemical analysis demonstrated that lesion formation inrlin1 was light-dependent accompanied by reactive oxygen species accumulated. These results suggest that tetrapyrrole participates in lesion formation in rice.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Ayliffe, M.A., Agostino, A., Clarke, B.C. et al. Plant Cell, 21 (2009),pp. 814-831
    [2]
    Boese, Q.F., Spano, A.J., Li, J.M. et al. J. Biol. Chem., 266 (1991),pp. 17060-17066
    [3]
    Chou, K.C., Shen, H.B. Cell-PLoc: a package of web servers for predicting subcellular localization of proteins in various organisms Nat. Protoco, 3 (2008),pp. 153-162
    [4]
    Danon, A., Miersch, O., Felix, G. et al. Plant J., 41 (2005),pp. 68-80
    [5]
    Edwards, K., Johnstone, C., Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis Nucleic Acids Res., 19 (1991),p. 1349
    [6]
    Gray, J., Janick-Buckner, D., Buckner, B. et al. Plant Physiol., 130 (2002),pp. 1894-1907
    [7]
    Grimm, B. Novel insights in the control of tetrapyrrole metabolism of higher plants Curr. Opin. Plant Biol., 1 (1998),pp. 245-250
    [8]
    Hammond-Kosack, K.E., Jones, J.D.G. Resistance gene-dependent plant defense responses Plant Cell, 8 (1996),pp. 1773-1791
    [9]
    Hirashima, M., Tanaka, R., Tanaka, A. Plant Cell Physiol., 50 (2009),pp. 719-729
    [10]
    Hu, G., Yalpani, N., Briggs, S.P. et al. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize Plant Cell, 10 (1998),pp. 1095-1105
    [11]
    Ishikawa, A. Biosci. Biotechnol. Biochem., 69 (2005),pp. 1929-1934
    [12]
    Ishikawa, A., Okamoto, H., Iwasaki, Y. et al. Plant J., 27 (2001),pp. 89-99
    [13]
    Jung, K.H., Hur, J., Ryu, C.H. et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system Plant Cell Physiol., 44 (2003),pp. 463-472
    [14]
    Kruse, E., Mock, H.P., Grimm, B. Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system EMBO J., 14 (1995),pp. 3712-3720
    [15]
    Lee, S., Kim, J.H., Yoo, E. et al. Differential regulation of chlorophyll a oxygenase genes in rice Plant Mol. Biol., 57 (2005),pp. 805-818
    [16]
    Liu, X.Q., Bai, X.Q., Wang, X.J. et al. OsWRKY71, a rice transcription factor, is involved in rice defense response J. Plant Physiol., 164 (2007),pp. 969-979
    [17]
    Ma, Y.M., Liu, L., Zhu, C.G. et al. Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system J. Genet. Genomics, 36 (2009),pp. 267-276
    [18]
    Mach, J.M., Castillo, A.R., Hoogstraten, R. et al. Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 771-776
    [19]
    Matin, M.N., Pandeya, D., Baek, K.H. et al. Phenotypic and genotypic analysis of rice lesion mimic mutants Plant Pathol. J., 26 (2010),pp. 159-169
    [20]
    Meskauskiene, R., Nater, M., Goslings, D. et al. Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 12826-12831
    [21]
    Mock, H.P., Grimm, B. Reduction of uroporphyrinogen decarboxylase by antisense RNA expression affects activities of other enzymes involved in tetrapyrrole biosynthesis and leads to light-dependent necrosis Plant Physiol., 113 (1997),pp. 1101-1112
    [22]
    Mock, H.P., Lermontova, I., Keetman, U. et al. Consequences of photo-oxidation in transgenic tobacco with co-suppression of coproporphyrinogen oxidase Phyton-Ann. Rei. Bot. A, 37 (1997),pp. 169-174
    [23]
    Mock, H.P., Keetman, U., Kruse, E. et al. Defense responses to tetrapyrrole-induced oxidative stress in transgenic plants with reduced uroporphyrinogen decarboxylase or coproporphyrinogen oxidase activity Plant Physiol., 116 (1998),pp. 107-116
    [24]
    Mock, H.P., Heller, W., Molina, A. et al. Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus J. Biol. Chem., 274 (1999),pp. 4231-4238
    [25]
    Molina, A., Volrath, S., Guyer, D. et al. Plant J., 17 (1999),pp. 667-678
    [26]
    Nagata, N., Tanaka, R., Satoh, S. et al. Plant Cell, 17 (2005),pp. 233-240
    [27]
    op den Camp, R.G., Przybyla, D., Ochsenbein, C. et al. Plant Cell, 15 (2003),pp. 2320-2332
    [28]
    Papenbrock, J., Mishra, S., Mock, H.P. et al. Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants Plant J., 28 (2001),pp. 41-50
    [29]
    Tanaka, R., Tanaka, A. Tetrapyrrole biosynthesis in higher plants Annu. Rev. Plant Biol., 58 (2007),pp. 321-346
    [30]
    Tanaka, R., Hirashima, M., Satoh, S. et al. Plant Cell Physiol., 44 (2003),pp. 1266-1274
    [31]
    Thordal-Christensen, H., Zhang, Z.G., Wei, Y.D. et al. Plant J., 11 (1997),pp. 1187-1194
    [32]
    Tong, H., Jin, Y., Liu, W. et al. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice Plant J., 58 (2009),pp. 803-816
    [33]
    Wagner, D., Przybyla, D., Op den Camp, R. et al. Science, 306 (2004),pp. 1183-1185
    [34]
    Wang, P., Gao, J., Wan, C. et al. Plant Physiol., 153 (2010),pp. 994-1003
    [35]
    Wu, Z., Zhang, X., He, B. et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis Plant Physiol., 145 (2007),pp. 29-40
    [36]
    Yang, M., Wardzala, E., Johal, G.S. et al. Plant Mol. Biol., 54 (2004),pp. 175-191
    [37]
    Yang, Z., Wu, Y., Li, Y. et al. OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice Plant Mol. Biol., 70 (2009),pp. 219-229
    [38]
    Zhang, H.T., Li, J.J., Yoo, J.H. et al. Plant Mol. Biol., 62 (2006),pp. 325-337
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return