5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 12
Dec.  2010
Turn off MathJax
Article Contents

Molecular and evolutionary analyses of formyl peptide receptors suggest the absence of VNO-specific FPRs in primates

doi: 10.1016/S1673-8527(09)60094-1
More Information
  • Corresponding author: E-mail address: shipengsir@gmail.com (Peng Shi)
  • Received Date: 2010-08-05
  • Accepted Date: 2010-08-27
  • Rev Recd Date: 2010-08-26
  • Available Online: 2010-12-28
  • Publish Date: 2010-12-20
  • Formyl peptide receptors (FPRs) were observed to expand in rodents and were recently suggested as candidate vomeronasal chemosensory receptors. Since vomeronasal chemosensory receptors usually underwent positive selection and evolved concordantly with the vomeronasal organ (VNO) morphology, we surveyed FPRs in primates in which VNO morphology is greatly diverse and thus it would provide us a clearer view of VNO-FPRs evolution. By screening available primate genome sequences, we obtained the FPR repertoires in representative primate species. As a result, we did not find FPR family size expansion in primates. Further analyses showed no evolutionary force variance between primates with or without VNO structure, which indicated that there was no functional divergence among primates FPRs. Our results suggest that primates lack the VNO-specific FPRs and the FPR expansion is not a common phenomenon in mammals outside rodent lineage, regardless of VNO complexity.
  • loading
  • [1]
    Altschul, S.F., Madden, T.L., Schaffer, A.A. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res., 25 (1997),pp. 3389-3402
    [2]
    Alvarez, V., Coto, E., Setien, F. et al. Molecular evolution of the N-formyl peptide and C5a receptors in non-human primates Immunogenetics, 44 (1996),pp. 446-452
    [3]
    Bhatnagar, K.P., Meisami, E. Vomeronasal organ in bats and primates: extremes of structural variability and its phylogenetic implications Microsc. Res. Tech., 43 (1998),pp. 465-475
    [4]
    Boulay, F., Tardif, M., Brouchon, L. et al. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors Biochemistry, 29 (1990),pp. 11123-11133
    [5]
    Devosse, T., Guillabert, A., D'Haene, N. et al. Formyl peptide receptor-like 2 is expressed and functional in plasmacytoid dendritic cells, tissue-specific macrophage subpopulations, and eosinophils J. Immunol., 182 (2009),pp. 4974-4984
    [6]
    Dulac, C., Axel, R. A novel family of genes encoding putative pheromone receptors in mammals Cell, 83 (1995),pp. 195-206
    [7]
    Durstin, M., Gao, J.L., Tiffany, H.L. et al. Differential expression of members of the N-formylpeptide receptor gene cluster in human phagocytes Biochem. Biophys. Res. Commun., 201 (1994),pp. 174-179
    [8]
    Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap Evolution, 39 (1985),pp. 783-791
    [9]
    Gao, J.L., Chen, H., Filie, J.D. et al. Differential expansion of the N-formylpeptide receptor gene cluster in human and mouse Genomics, 51 (1998),pp. 270-276
    [10]
    Grus, W.E., Shi, P., Zhang, Y.P. et al. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 5767-5772
    [11]
    Grus, W.E., Shi, P., Zhang, J. Largest vertebrate vomero-nasal type 1 receptor gene repertoire in the semiaquatic platypus Mol. Biol. Evol., 24 (2007),pp. 2153-2157
    [12]
    Gu, X. Statistical methods for testing functional divergence after gene duplication Mol. Biol. Evol., 16 (1999),pp. 1664-1674
    [13]
    Herrada, G., Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution Cell, 90 (1997),pp. 763-773
    [14]
    Le, Y., Murphy, P.M., Wang, J.M. Formyl-peptide receptors revisited Trends Immunol., 23 (2002),pp. 541-548
    [15]
    Liberles, S.D., Horowitz, L.F., Kuang, D. et al. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 9842-9847
    [16]
    Matsunami, H., Buck, L.B. A multigene family encoding a diverse array of putative pheromone receptors in mammals Cell, 90 (1997),pp. 775-784
    [17]
    Migeotte, I., Communi, D., Parmentier, M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses Cytokine Growth Factor Rev., 17 (2006),pp. 501-519
    [18]
    Migeotte, I., Riboldi, E., Franssen, J.D. et al. Identification and characterization of an endogenous chemotactic ligand specific for FPRL2 J. Exp. Med., 201 (2005),pp. 83-93
    [19]
    Murphy, P.M., Ozcelik, T., Kenney, R.T. et al. A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family J. Biol. Chem., 267 (1992),pp. 7637-7643
    [20]
    Riviere, S., Challet, L., Fluegge, D. et al. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors Nature, 459 (2009),pp. 574-577
    [21]
    Ryba, N.J., Tirindelli, R. A new multigene family of putative pheromone receptors Neuron, 19 (1997),pp. 371-379
    [22]
    Saitou, N., Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees Mol. Biol. Evol., 4 (1987),pp. 406-425
    [23]
    Schilling, A., Serviere, J., Gendrot, G. et al. Vomeronasal activation by urine in the primate Microcebus murinus: a 2 DG study Exp. Brain Res., 81 (1990),pp. 609-618
    [24]
    Shi, P., Bielawski, J.P., Yang, H. et al. Adaptive diversification of vomeronasal receptor 1 genes in rodents J. Mol. Evol., 60 (2005),pp. 566-576
    [25]
    Shi, P., Zhang, J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land Genome Res., 17 (2007),pp. 166-174
    [26]
    Shi, P., Zhang, J.
    [27]
    Smith, T.D., Bhatnagar, K.P., Burrows, A.M. et al. J. Neurocytol., 34 (2005),pp. 135-147
    [28]
    Takigami, S., Mori, Y., Tanioka, Y. et al. Morphological evidence for two types of Mammalian vomeronasal system Chem. Senses, 29 (2004),pp. 301-310
    [29]
    Tamura, K., Dudley, J., Nei, M. et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 Mol. Biol. Evol., 24 (2007),pp. 1596-1599
    [30]
    Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2002). Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics Chapter 2: Unit 2.3.
    [31]
    Wang, G., Shi, P., Zhu, Z. et al. More functional V1R genes occur in nest-living and nocturnal terricolous mammals Genome Biol. Evol., 2 (2010),pp. 277-283
    [32]
    Yang, H., Shi, P., Zhang, Y.P. et al. Genomics, 86 (2005),pp. 306-315
    [33]
    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood Mol. Biol. Evol., 24 (2007),pp. 1586-1591
    [34]
    Ye, R.D., Boulay, F., Wang, J.M. et al. International union of basic and clinical pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family Pharmacol. Rev., 61 (2009),pp. 119-161
    [35]
    Young, J.M., Massa, H.F., Hsu, L. et al. Genome Res., 20 (2010),pp. 10-18
    [36]
    Zhang, J., Webb, D.M. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 8337-8341
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (66) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return