[1] |
Adams, K.L., Percifield, R., Wendel, J.F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid Genetics, 168 (2004),pp. 2217-2226
|
[2] |
Allshire, R.C., Karpen, G.H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet., 9 (2008),pp. 923-937
|
[3] |
Black, B.E., Foltz, D.R., Chakravarthy, S. et al. Structural determinants for generating centromeric chromatin Nature, 430 (2004),pp. 578-582
|
[4] |
Bowers, J.E., Chapman, B.A., Rong, J.K. et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events Nature, 422 (2003),pp. 433-438
|
[5] |
Chen, B.J., Ling, X.Y., Zhu, S.W. Journal of Anhui Agrotechnical Normal School, 10 (1996),pp. 27-28
|
[6] |
Chen, Z.J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids Annu. Rev. Plant Biol., 58 (2007),pp. 377-406
|
[7] |
Comai, L. Genetic and epigenetic interactions in allopolyploid plants Plant Mol. Biol., 43 (2000),pp. 387-399
|
[8] |
Cooper, J.L., Henikoff, S. Adaptive evolution of the histone fold domain in centromeric histones Mol. Biol. Evol., 21 (2004),pp. 1712-1718
|
[9] |
Flagel, L., Udall, J., Nettleton, D. et al. BMC Biol., 6 (2008),p. 16
|
[10] |
Gaut, B.S., Doebley, J.F. DNA sequence evidence for the segmental allotetraploid origin of maize Proc. Nat. Acad. Sci. USA, 94 (1997),pp. 6809-6814
|
[11] |
Ge, X.H., Wang, J., Li, Z.Y. Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragmus Ann. Bot., 104 (2009),pp. 19-31
|
[12] |
Guyot, R., Keller, B. Ancestral genome duplication in rice Genome, 47 (2004),pp. 610-614
|
[13] |
Han, Y.H., Wang, G., Liu, Z. et al. Divergence in centromere structure distinguishes related genomes in Coix lacryma-jobi and its wild relative Chromosoma, 119 (2010),pp. 89-98
|
[14] |
Henikoff, S., Ahmad, K., Malik, H.S. The centromere paradox: stable inheritance with rapidly evolving DNA Science, 293 (2001),pp. 1098-1102
|
[15] |
Hirsch, C.D., Wu, Y.F., Yan, H.H. et al. Mol. Biol. Evol., 26 (2009),pp. 2877-2885
|
[16] |
Hovav, R., Udall, J.A., Chaudhary, B. et al. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant Proc. Nat. Acad. Sci. USA, 105 (2008),pp. 6191-6195
|
[17] |
Jiang, J.M., Gill, B.S., Wang, G.L. et al. Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 4487-4491
|
[18] |
Jin, W.W., Melo, J.R., Nagaki, K. et al. Maize centromeres: Organization and functional adaptation in the genetic background of oat Plant Cell, 16 (2004),pp. 571-581
|
[19] |
Kawabe, A., Nasuda, S. Mol. Genet. Genomics, 272 (2005),pp. 593-602
|
[20] |
Lee, H.R., Zhang, W.L., Langdon, T. et al. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 11793-11798
|
[21] |
Leitch, A.R., Leitch, I.J. Genomic plasticity and the diversity of polyploidy plants Science, 320 (2008),pp. 481-483
|
[22] |
Malik, H.S., Henikoff, S. Genetics, 157 (2001),pp. 1293-1298
|
[23] |
Nagaki, K., Cheng, Z.K., Yang, S.O. et al. Sequencing of a rice centromere uncovers active genes Nat. Genet., 36 (2004),pp. 138-145
|
[24] |
Nagaki, K., Kashihara, K., Murata, M. A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco Chromosoma, 118 (2009),pp. 249-257
|
[25] |
Nagaki, K., Terada, K., Wakimoto, M. et al. Chromosome Res., 18 (2010),pp. 203-211
|
[26] |
Otto, S.P., Whitton, J. Polyploid incidence and evolution Annu. Rev. Genet., 34 (2000),pp. 401-437
|
[27] |
Pignatta, D., Comai, L. Parental squabbles and genome expression: lessons from the polyploids J. Biol., 8 (2009),p. 43
|
[28] |
Ravi, M., Chan, S.W.L. Haploid plants produced by centromere-mediated genome elimination Nature, 464 (2010),pp. 615-619
|
[29] |
Semon, M., Wolfe, K.H. Consequences of genome duplication Curr. Opin. Genet. Dev., 17 (2007),pp. 505-512
|
[30] |
Talbert, P.B., Masuelli, R., Tyagi, A.P. et al. Plant Cell, 14 (2002),pp. 1053-1066
|
[31] |
Tamura, K., Dudley, J., Nei, M. et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 Mol. Biol. Evol., 24 (2007),pp. 1596-1599
|
[32] |
Tan, G.X., Xiong, Z.Y., Jin, H.J. et al. J. Integr. Plant Biol., 48 (2006),pp. 1077-1083
|
[33] |
Thompson, J.D., Gibson, T.J., Higgins, D.G.
|
[34] |
Vermaak, D., Hayden, H.S., Henikoff, S. Centromere targeting element within the histone fold domain of Cid Mol. Cell Biol., 22 (2002),pp. 7553-7561
|
[35] |
Wang, G.X., Zhang, X.Y., Jin, W.W. An overview of plant centromere J. Genet. Genomics, 36 (2009),pp. 529-537
|
[36] |
Yi, C.D., Tang, S.Z., Zhou, Y. et al. Chin. Sci. Bull., 53 (2008),pp. 2973-2980
|
[37] |
Zhong, C.X., Marshall, J.B., Topp, C. et al. Centromeric retroelements and satellites interact with Maize kinetochore protein CENH3 Plant Cell, 14 (2002),pp. 2825-2836
|