5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 10
Oct.  2010

Toward understanding genetic mechanisms of complex traits in rice

doi: 10.1016/S1673-8527(09)60084-9
More Information
  • Corresponding author: E-mail address: hxlin@sibs.ac.cn (Hong-Xuan Lin)
  • Received Date: 2010-08-16
  • Accepted Date: 2010-08-26
  • Available Online: 2010-10-27
  • Publish Date: 2010-10-20
  • Rice is the primary carbohydrate staple cereal feeding the world population. Many genes, known as quantitative trait loci (QTLs), control most of the agronomically important traits in rice. The identification of QTLs controlling agricultural traits is vital to increase yield and meet the needs of the increasing human population, but the progress met with challenges due to complex QTL inheritance. To date, many QTLs have been detected in rice, including those responsible for yield and grain quality; salt, drought and submergence tolerance; disease and insect resistance; and nutrient utilization efficiency. Map-based cloning techniques have enabled scientists to successfully fine map and clone approximately seventeen QTLs for several traits. Additional in-depth functional analyses and characterizations of these genes will provide valuable assistance in rice molecular breeding.
  • [1]
    Aluko, G., Martinez, C., Tohme, J. et al. Theor. Appl. Genet., 109 (2004),pp. 630-639
    [2]
    Ando, T., Yamamoto, T., Shimizu, T. et al. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice Theor. Appl. Genet., 116 (2008),pp. 881-890
    [3]
    Ashikari, M., Matsuoka, M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding Trends Plant Sci., 11 (2006),pp. 344-350
    [4]
    Ashikari, M., Sakakibara, H., Lin, S. et al. Cytokinin oxidase regulates rice grain production Science, 309 (2005),pp. 741-745
    [5]
    Cai, H.W., Morishima, H. Genomic regions affecting seed shattering and seed dormancy in rice Theor. Appl. Genet., 100 (2000),pp. 840-846
    [6]
    Cho, Y.G., Eun, M.Y., McCouch, S.R. et al. Theor. Appl. Genet., 89 (1994),pp. 54-59
    [7]
    Doi, K., Izawa, T., Fuse, T. et al. Genes Dev., 18 (2004),pp. 926-936
    [8]
    Fan, C., Xing, Y., Mao, H. et al. Theor. Appl. Genet., 112 (2006),pp. 1164-1171
    [9]
    Fukuoka, S., Okuno, K. Theor. Appl. Genet., 103 (2001),pp. 185-190
    [10]
    Gao, J.P., Chao, D.Y., Lin, H.X. Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice J. Integr. Plant Biol., 49 (2007),pp. 742-750
    [11]
    Goff, S.A., Ricke, D., Lan, T.H. et al. Science, 296 (2002),pp. 92-100
    [12]
    Gowda, M., Venu, R.C., Roopalakshmi, K. et al. Advances in rice breeding, genetics and genomics Mol. Breed., 11 (2003),pp. 337-352
    [13]
    Hao, W., Jin, J., Sun, S.Y. et al. Construction of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome and identification of quantitative trait loci for rice quality J. Plant Physiol. Mol. Biol., 32 (2006),pp. 354-362
    [14]
    Hattori, Y., Nagai, K., Furukawa, S. et al. Nature, 460 (2009),pp. 1026-1030
    [15]
    Huang, N., Courtois, B., Khush, G.S. et al. Association of quantitative trait loci for plant height with major dwarfing genes in rice Heredity, 77 (1996),pp. 130-137
    [16]
    Huang, N., Parco, A., Mew, T. et al. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population Mol. Breed., 3 (1997),pp. 105-113
    [17]
    Huang, X., Qian, Q., Liu, Z. et al. Nat. Genet., 41 (2009),pp. 494-497
    [18]
    Ishimaru, K. Identification of a locus increasing rice yield and physiological analysis of its function Plant Physiol., 133 (2003),pp. 1083-1090
    [19]
    Ishimaru, K., Ono, K., Kashiwagi, T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy Planta, 218 (2004),pp. 388-395
    [20]
    Jiao, Y., Wang, Y., Xue, D. et al. Nat. Genet., 42 (2010),pp. 541-544
    [21]
    Jin, J., Huang, W., Gao, J.P. et al. Genetic control of rice plant architecture under domestication Nat. Genet., 40 (2008),pp. 1365-1369
    [22]
    Khush, G.S. Green revolution: preparing for the 21st century Genome, 42 (1999),pp. 646-655
    [23]
    Khush, G.S. What it will take to feed 5.0 billion rice consumers in 2030 Plant Mol. Biol., 59 (2005),pp. 1-6
    [24]
    Kojima, S., Takahashi, Y., Kobayashi, Y. et al. Plant Cell Physiol., 43 (2002),pp. 1096-1105
    [25]
    Komori, T., Nitta, N. Utilization of the CAPS/dCAPS method to convert rice SNPs into PCR-based markers Breed Sci., 55 (2005),pp. 93-98
    [26]
    Konishi, S., Izawa, T., Lin, S.Y. et al. An SNP caused loss of seed shattering during rice domestication Science, 312 (2006),pp. 1392-1396
    [27]
    Koyama, M.L., Levesley, A., Koebner, R.M. et al. Quantitative trait loci for component physiological traits determining salt tolerance in rice Plant Physiol., 125 (2001),pp. 406-422
    [28]
    Lanceras, J.C., Pantuwan, G., Jongdee, B. et al. Quantitative trait loci associated with drought tolerance at reproductive stage in rice Plant Physiol., 135 (2004),pp. 384-399
    [29]
    Li, C., Zhou, A., Sang, T. Rice domestication by reducing shattering Science, 311 (2006),pp. 1936-1939
    [30]
    Li, C., Zhou, A., Sang, T. New Phytol., 170 (2006),pp. 185-193
    [31]
    Li, J., Thomson, M., McCouch, S.R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3 Genetics, 168 (2004),pp. 2187-2195
    [32]
    Li, P., Wang, Y., Qian, Q. et al. Cell Res., 17 (2007),pp. 402-410
    [33]
    Li, X., Qian, Q., Fu, Z. et al. Control of tillering in rice Nature, 422 (2003),pp. 618-621
    [34]
    Lian, X., Xing, Y., Yan, H. et al. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid Theor. Appl. Genet., 112 (2005),pp. 85-96
    [35]
    Lin, H., Ashikari, M., Yamanouchi, U. et al. Breed. Sci., 52 (2002),pp. 35-41
    [36]
    Lin, H.X., Qian, H.R., Zhuang, J.Y. et al. Theor. Appl. Genet., 92 (1996),pp. 920-927
    [37]
    Lin, H.X., Zhu, M.Z., Yano, M. et al. Theor. Appl. Genet., 108 (2004),pp. 253-260
    [38]
    Lin, S.Y., Sasaki, T., Yano, M. Theor Appl Genet, 96 (1998),pp. 997-1003
    [39]
    Liu, G., Zhang, Z., Zhu, H. et al. Theor. Appl. Genet., 116 (2008),pp. 923-931
    [40]
    Maeda, H., Ishii, T., Mori, H. et al. Breed. Sci., 47 (1997),pp. 317-320
    [41]
    Maheswaran, M., Huang, N., Sreerangasamy, S.R. et al. Mol. Breed., 6 (2000),pp. 145-155
    [42]
    Matsubara, K., Kono, I., Hori, K. et al. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars Theor. Appl. Genet., 117 (2008),pp. 935-945
    [43]
    McCouch, S.R., Chen, X., Panaud, O. et al. Microsatellite marker development, mapping and applications in rice genetics and breeding Plant Mol. Biol., 35 (1997),pp. 89-99
    [44]
    McCouch, S.R., Teytelman, L., Xu, Y. et al. DNA Res., 9 (2002),pp. 199-207
    [45]
    Miura, K., Ikeda, M., Matsubara, A. et al. Nat. Genet., 42 (2010),pp. 545-549
    [46]
    Mohan, M., Nair, S., Bentur, J.S. et al. Theor. Appl. Genet., 87 (1994),pp. 782-788
    [47]
    Monna, L., Lin, X., Kojima, S. et al. Theor. Appl. Genet., 104 (2002),pp. 772-778
    [48]
    Monna, L., Kitazawa, N., Yoshino, R. et al. DNA Res., 9 (2002),pp. 11-17
    [49]
    Nasu, S., Suzuki, J., Ohta, R. et al. DNA Res., 9 (2002),pp. 163-171
    [50]
    Nemoto, K., Ukai, Y., Tang, D.Q. et al. Inheritance of early elongation ability in floating rice revealed by diallel and QTL analyses Theor. Appl. Genet., 109 (2004),pp. 42-47
    [51]
    Project, I.R.G.S. The map-based sequence of the rice genome Nature, 436 (2005),pp. 793-800
    [52]
    Rafalski, A. Applications of single nucleotide polymorphisms in crop genetics Curr. Opin. Plant Biol., 5 (2002),pp. 94-100
    [53]
    Ren, Z.H., Gao, J.P., Li, L.G. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter Nat. Genet., 37 (2005),pp. 1141-1146
    [54]
    Sallaud, C., Lorieux, M., Roumen, E. et al. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy Theor. Appl. Genet., 106 (2003),pp. 794-803
    [55]
    Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M. et al. Green revolution: a mutant gibberellin-synthesis gene in rice Nature, 416 (2002),pp. 701-702
    [56]
    Septiningsih, E.M., Trijatmiko, K.R., Moeljopawiro, S. et al. Theor. Appl. Genet., 107 (2003),pp. 1433-1441
    [57]
    Shomura, A., Izawa, T., Ebana, K. et al. Deletion in a gene associated with grain size increased yields during rice domestication Nat. Genet., 40 (2008),pp. 1023-1028
    [58]
    Song, X.J., Huang, W., Shi, M. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase Nat Genet, 39 (2007),pp. 623-630
    [59]
    Sripongpangkul, K., Posa, G.B.T., Senadhira, D.W. et al. Genes/QTLs affecting flood tolerance in rice Theor. Appl. Genet., 101 (2000),pp. 1074-1081
    [60]
    Sun, S., Hao, W., ad Lin, H. Identification of QTLs for cooking and eating quality of rice grain Rice Sci., 13 (2006),pp. 161-169
    [61]
    Takahashi, Y., Shomura, A., Sasaki, T. et al. Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 7922-7927
    [62]
    Tan, L., Li, X., Liu, F. et al. Control of a key transition from prostrate to erect growth in rice domestication Nat. Genet., 40 (2008),pp. 1360-1364
    [63]
    Tian, F., Li, D.J., Fu, Q. et al. Theor. Appl. Genet., 112 (2006),pp. 570-580
    [64]
    Tsuji, H., Tamaki, S., Komiya, R. et al. Florigen and the photoperiodic control of flowering in rice Rice, 1 (2008),pp. 25-35
    [65]
    Wan, X., Weng, J., Zhai, H. et al. Genetics, 179 (2008),pp. 2239-2252
    [66]
    Wan, X.Y., Wan, J.M., Su, C.C. et al. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines Theor. Appl. Genet., 110 (2004),pp. 71-79
    [67]
    Wan, X.Y., Wan, J.M., Jiang, L. et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects Theor. Appl. Genet., 112 (2006),pp. 1258-1270
    [68]
    Wang, Y., Li, J. Rice, rising Nat. Genet., 40 (2008),pp. 1273-1275
    [69]
    Weng, J., Gu, S., Wan, X. et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight Cell Res., 18 (2008),pp. 1199-1209
    [70]
    Wissuwa, M., Ae, N. Plant Soil., 237 (2001),pp. 275-286
    [71]
    Wissuwa, M., Ismail, A.M., Yanagihara, S. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance Plant Physiol., 142 (2006),pp. 731-741
    [72]
    Xing, Y.Z., Tang, W.J., Xue, W.Y. et al. Theor. Appl. Genet., 116 (2008),pp. 789-796
    [73]
    Xing, Y., Zhang, Q. Genetic and molecular bases of rice yield Annu. Rev. Plant Biol., 61 (2010),pp. 421-442
    [74]
    Xiong, L.Z., Liu, K.D., Dai, X.K. et al. Theor. Appl. Genet., 98 (1999),pp. 243-251
    [75]
    Xu, K., Xu, X., Fukao, T. et al. Nature, 442 (2006),pp. 705-708
    [76]
    Xue, W., Xing, Y., Weng, X. et al. Nat. Genet., 40 (2008),pp. 761-767
    [77]
    Yamamoto, T., Lin, H., Sasaki, T. et al. Genetics, 154 (2000),pp. 885-891
    [78]
    Yano, M., Harushima, Y., Nagamura, Y. et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map Theor. Appl. Genet., 95 (1997),pp. 1025-1032
    [79]
    Yano, M., Katayose, Y., Ashikari, M. et al. Plant Cell, 12 (2000),pp. 2473-2483
    [80]
    You, A., Lu, X., Jin, H. et al. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice Genetics, 172 (2006),pp. 1287-1300
    [81]
    Yu, B., Lin, Z., Li, H. et al. Plant J., 52 (2007),pp. 891-898
    [82]
    Yu, J., Hu, S., Wang, J. et al. Science, 296 (2002),pp. 79-92
    [83]
    Yue, B., Xue, W., Xiong, L. et al. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance Genetics, 172 (2006),pp. 1213-1228
    [84]
    Zhang, G., Angeles, E.R., Abenes, M.L.P. et al. Theor. Appl. Genet., 93 (1996),pp. 65-70
    [85]
    Zhang, J., Zheng, H.G., Aarti, A. et al. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species Theor. Appl. Genet., 103 (2001),pp. 19-29
    [86]
    Zhang, Q. Strategies for developing Green Super Rice Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 16402-16409
    [87]
    Zhang, X., Zhou, S., Fu, Y. et al. Plant Mol. Biol., 62 (2006),pp. 247-259
    [88]
    Zhuang, J.Y., Lin, H.X., Lu, J. et al. Analysis of QTL × environment interaction for yield components and plant height in rice Theor. Appl. Genet., 95 (1997),pp. 799-808
    [89]
    Zou, J.H., Pan, X.B., Chen, Z.X. et al. Theor. Appl. Genet., 101 (2000),pp. 569-573
  • Relative Articles

    [1]Yidan Ouyang, Xu Li, Qifa Zhang. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 385-393. doi: 10.1016/j.jgg.2022.02.022
    [2]Kangli Sun, Minghui Huang, Wubei Zong, Dongdong Xiao, Chen Lei, Yanqiu Luo, Yingang Song, Shengting Li, Yu Hao, Wanni Luo, Bingqun Xu, Xiaotong Guo, Guangliang Wei, Letian Chen, Yao-Guang Liu, Jingxin Guo. Hd1, Ghd7, and DTH8 synergistically determine the rice heading date and yield-related agronomic traits[J]. Journal of Genetics and Genomics, 2022, 49(5): 437-447. doi: 10.1016/j.jgg.2022.02.018
    [3]Penglin Zhan, Shuaipeng Ma, Zhili Xiao, Fangping Li, Xin Wei, Shaojun Lin, Xiaoling Wang, Zhe Ji, Yu Fu, Jiahao Pan, Mi Zhou, Yue Liu, Zengyuan Chang, Lu Li, Suhong Bu, Zupei Liu, Haitao Zhu, Guifu Liu, Guiquan Zhang, Shaokui Wang. Natural variations in grain length 10 (GL10) regulate rice grain size[J]. Journal of Genetics and Genomics, 2022, 49(5): 405-413. doi: 10.1016/j.jgg.2022.01.008
    [4]Libin Chen, Chonghui Ji, Degui Zhou, Xin Gou, Jianian Tang, Yongjie Jiang, Jingluan Han, Yao-Guang Liu, Letian Chen, Yongyao Xie. OsLTP47 may function in a lipid transfer relay essential for pollen wall development in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 481-491. doi: 10.1016/j.jgg.2022.03.003
    [5]Weiping Yang, Pengkun Xu, Juncheng Zhang, Shuo Zhang, Zhenwei Li, Ke Yang, Xinyuan Chang, Yibo Li. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 414-426. doi: 10.1016/j.jgg.2022.02.002
    [6]Hanwen Li, Jinqiang Nian, Shuang Fang, Meng Guo, Xiahe Huang, Fengxia Zhang, Qing Wang, Jian Zhang, Jiaoteng Bai, Guojun Dong, Peiyong Xin, Xianzhi Xie, Fan Chen, Guodong Wang, Yingchun Wang, Qian Qian, Jianru Zuo, Jinfang Chu, Xiaohui Ma. Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 469-480. doi: 10.1016/j.jgg.2022.02.006
    [7]Xinkai Zhou, Tao Zhu, Wen Fang, Ranran Yu, Zhaohui He, Dijun Chen. Systematic annotation of conservation states provides insights into regulatory regions in rice[J]. Journal of Genetics and Genomics, 2022, 49(12): 1127-1137. doi: 10.1016/j.jgg.2022.04.003
    [8]Guangyu Liu, Wanxia Jiang, Lei Tian, Yongcai Fu, Lubin Tan, Zuofeng Zhu, Chuanqing Sun, Fengxia Liu. Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 458-468. doi: 10.1016/j.jgg.2022.01.007
    [9]Jinyue Ge, Junrui Wang, Hongbo Pang, Fei Li, Danjing Lou, Weiya Fan, Ziran Liu, Jiaqi Li, Danting Li, Baoxuan Nong, Zongqiong Zhang, Yanyan Wang, Jingfen Huang, Meng Xing, Yamin Nie, Xiaorong Xiao, Fan Zhang, Wensheng Wang, Jianlong Xu, Sung Ryul Kim, Ajay Kohli, Guoyou Ye, Weihua Qiao, Qingwen Yang, Xiaoming Zheng. Genome-wide selection and introgression of Chinese rice varieties during breeding[J]. Journal of Genetics and Genomics, 2022, 49(5): 492-501. doi: 10.1016/j.jgg.2022.02.025
    [10]Xiaodong Xin, Xingwang Li, Junkai Zhu, Xiaobin Liu, Zhenghu Chu, Jiali Shen, Changyin Wu. OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice[J]. Journal of Genetics and Genomics, 2021, 48(6): 485-496. doi: 10.1016/j.jgg.2021.04.011
    [11]Zhiyao Lv, Rui Dai, Haoran Xu, Yongxin Liu, Bo Bai, Ying Meng, Haiyan Li, Xiaofeng Cao, Yang Bai, Xianwei Song, Jingying Zhang. The rice histone methylation regulates hub species of the root microbiota[J]. Journal of Genetics and Genomics, 2021, 48(9): 836-843. doi: 10.1016/j.jgg.2021.06.005
    [12]Aili Qu, Yan Xu, Xinxing Yu, Qi Si, Xuwen Xu, Changhao Liu, Liuyi Yang, Yueping Zheng, Mengmeng Zhang, Shuqun Zhang, Juan Xu. Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1 (OsGPT1) in rice[J]. Journal of Genetics and Genomics, 2021, 48(8): 695-705. doi: 10.1016/j.jgg.2021.04.013
    [13]Guo Zong, Ahong Wang, Lu Wang, Guohua Liang, Minghong Gu, Tao Sang, Bin Han. A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2012, 39(7): 335-350. doi: 10.1016/j.jgg.2012.06.004
    [14]Mika Hayashi-Tsugane, Masahiko Maekawa, Qian Qian, Hirokazu Kobayashi, Shigeru Iida, Kazuo Tsugane. A rice mutant displaying a heterochronically elongated internode carries a 100 kb deletion[J]. Journal of Genetics and Genomics, 2011, 38(3): 123-128. doi: 10.1016/j.jgg.2011.02.004
    [15]Changhui Sun, Linchuan Liu, Jiuyou Tang, Aihong Lin, Fantao Zhang, Jun Fang, Genfa Zhang, Chengcai Chu. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice[J]. Journal of Genetics and Genomics, 2011, 38(1): 29-37. doi: 10.1016/j.jcg.2010.12.001
    [16]Liangyong Ma, Changdeng Yang, Dali Zeng, Jing Cai, Ximing Li, Zhijuan Ji, Yingwu Xia, Qian Qian, Jinsong Bao. Mapping QTLs for heading synchrony in a doubled haploid population of rice in two environments[J]. Journal of Genetics and Genomics, 2009, 36(5): 297-304. doi: 10.1016/S1673-8527(08)60118-6
    [17]Yi Zhang, Yunfeng Li, Jian Zhang, Fucheng Shen, Yuanxin Huang, Zhiwei Wu. Characterization and mapping of a new male sterility mutant of anther advanced dehiscence (t) in rice[J]. Journal of Genetics and Genomics, 2008, 35(3): 177-182. doi: 10.1016/S1673-8527(08)60024-7
    [18]Dongling Qi, Guizhen Guo, Myung-chul Lee, Junguo Zhang, Guilan Cao, Sanyuan Zhang, Seok-cheol Suh, Qingyang Zhou, Longzhi Han. Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice[J]. Journal of Genetics and Genomics, 2008, 35(5): 299-305. doi: 10.1016/S1673-8527(08)60043-0
    [19]Bing Yue, Weiya Xue, Lijun Luo, Yongzhong Xing. Identification of quantitative trait loci for four morphologic traits under water stress in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2008, 35(9): 569-575. doi: 10.1016/S1673-8527(08)60077-6
    [20]Longzhi Han, Yongli Qiao, Sanyuan Zhang, Yuanyuan Zhang, Guilan Cao, Jonghwan Kim, Kyuseong Lee, Heejong Koh. Identification of Quantitative Trait Loci for Cold Response of Seedling Vigor Traits in Rice[J]. Journal of Genetics and Genomics, 2007, 34(3): 239-246. doi: 10.1016/S1673-8527(07)60025-3
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0400.511.522.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.1 %FULLTEXT: 16.1 %META: 83.9 %META: 83.9 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 1.1 %其他: 1.1 %China: 54.0 %China: 54.0 %Colombia: 3.4 %Colombia: 3.4 %Russian Federation: 1.1 %Russian Federation: 1.1 %United States: 40.2 %United States: 40.2 %其他ChinaColombiaRussian FederationUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return