5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 10
Oct.  2010
Turn off MathJax
Article Contents

Toward understanding genetic mechanisms of complex traits in rice

doi: 10.1016/S1673-8527(09)60084-9
More Information
  • Corresponding author: E-mail address: hxlin@sibs.ac.cn (Hong-Xuan Lin)
  • Received Date: 2010-08-16
  • Accepted Date: 2010-08-26
  • Available Online: 2010-10-27
  • Publish Date: 2010-10-20
  • Rice is the primary carbohydrate staple cereal feeding the world population. Many genes, known as quantitative trait loci (QTLs), control most of the agronomically important traits in rice. The identification of QTLs controlling agricultural traits is vital to increase yield and meet the needs of the increasing human population, but the progress met with challenges due to complex QTL inheritance. To date, many QTLs have been detected in rice, including those responsible for yield and grain quality; salt, drought and submergence tolerance; disease and insect resistance; and nutrient utilization efficiency. Map-based cloning techniques have enabled scientists to successfully fine map and clone approximately seventeen QTLs for several traits. Additional in-depth functional analyses and characterizations of these genes will provide valuable assistance in rice molecular breeding.
  • loading
  • [1]
    Aluko, G., Martinez, C., Tohme, J. et al. Theor. Appl. Genet., 109 (2004),pp. 630-639
    [2]
    Ando, T., Yamamoto, T., Shimizu, T. et al. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice Theor. Appl. Genet., 116 (2008),pp. 881-890
    [3]
    Ashikari, M., Matsuoka, M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding Trends Plant Sci., 11 (2006),pp. 344-350
    [4]
    Ashikari, M., Sakakibara, H., Lin, S. et al. Cytokinin oxidase regulates rice grain production Science, 309 (2005),pp. 741-745
    [5]
    Cai, H.W., Morishima, H. Genomic regions affecting seed shattering and seed dormancy in rice Theor. Appl. Genet., 100 (2000),pp. 840-846
    [6]
    Cho, Y.G., Eun, M.Y., McCouch, S.R. et al. Theor. Appl. Genet., 89 (1994),pp. 54-59
    [7]
    Doi, K., Izawa, T., Fuse, T. et al. Genes Dev., 18 (2004),pp. 926-936
    [8]
    Fan, C., Xing, Y., Mao, H. et al. Theor. Appl. Genet., 112 (2006),pp. 1164-1171
    [9]
    Fukuoka, S., Okuno, K. Theor. Appl. Genet., 103 (2001),pp. 185-190
    [10]
    Gao, J.P., Chao, D.Y., Lin, H.X. Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice J. Integr. Plant Biol., 49 (2007),pp. 742-750
    [11]
    Goff, S.A., Ricke, D., Lan, T.H. et al. Science, 296 (2002),pp. 92-100
    [12]
    Gowda, M., Venu, R.C., Roopalakshmi, K. et al. Advances in rice breeding, genetics and genomics Mol. Breed., 11 (2003),pp. 337-352
    [13]
    Hao, W., Jin, J., Sun, S.Y. et al. Construction of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome and identification of quantitative trait loci for rice quality J. Plant Physiol. Mol. Biol., 32 (2006),pp. 354-362
    [14]
    Hattori, Y., Nagai, K., Furukawa, S. et al. Nature, 460 (2009),pp. 1026-1030
    [15]
    Huang, N., Courtois, B., Khush, G.S. et al. Association of quantitative trait loci for plant height with major dwarfing genes in rice Heredity, 77 (1996),pp. 130-137
    [16]
    Huang, N., Parco, A., Mew, T. et al. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population Mol. Breed., 3 (1997),pp. 105-113
    [17]
    Huang, X., Qian, Q., Liu, Z. et al. Nat. Genet., 41 (2009),pp. 494-497
    [18]
    Ishimaru, K. Identification of a locus increasing rice yield and physiological analysis of its function Plant Physiol., 133 (2003),pp. 1083-1090
    [19]
    Ishimaru, K., Ono, K., Kashiwagi, T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy Planta, 218 (2004),pp. 388-395
    [20]
    Jiao, Y., Wang, Y., Xue, D. et al. Nat. Genet., 42 (2010),pp. 541-544
    [21]
    Jin, J., Huang, W., Gao, J.P. et al. Genetic control of rice plant architecture under domestication Nat. Genet., 40 (2008),pp. 1365-1369
    [22]
    Khush, G.S. Green revolution: preparing for the 21st century Genome, 42 (1999),pp. 646-655
    [23]
    Khush, G.S. What it will take to feed 5.0 billion rice consumers in 2030 Plant Mol. Biol., 59 (2005),pp. 1-6
    [24]
    Kojima, S., Takahashi, Y., Kobayashi, Y. et al. Plant Cell Physiol., 43 (2002),pp. 1096-1105
    [25]
    Komori, T., Nitta, N. Utilization of the CAPS/dCAPS method to convert rice SNPs into PCR-based markers Breed Sci., 55 (2005),pp. 93-98
    [26]
    Konishi, S., Izawa, T., Lin, S.Y. et al. An SNP caused loss of seed shattering during rice domestication Science, 312 (2006),pp. 1392-1396
    [27]
    Koyama, M.L., Levesley, A., Koebner, R.M. et al. Quantitative trait loci for component physiological traits determining salt tolerance in rice Plant Physiol., 125 (2001),pp. 406-422
    [28]
    Lanceras, J.C., Pantuwan, G., Jongdee, B. et al. Quantitative trait loci associated with drought tolerance at reproductive stage in rice Plant Physiol., 135 (2004),pp. 384-399
    [29]
    Li, C., Zhou, A., Sang, T. Rice domestication by reducing shattering Science, 311 (2006),pp. 1936-1939
    [30]
    Li, C., Zhou, A., Sang, T. New Phytol., 170 (2006),pp. 185-193
    [31]
    Li, J., Thomson, M., McCouch, S.R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3 Genetics, 168 (2004),pp. 2187-2195
    [32]
    Li, P., Wang, Y., Qian, Q. et al. Cell Res., 17 (2007),pp. 402-410
    [33]
    Li, X., Qian, Q., Fu, Z. et al. Control of tillering in rice Nature, 422 (2003),pp. 618-621
    [34]
    Lian, X., Xing, Y., Yan, H. et al. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid Theor. Appl. Genet., 112 (2005),pp. 85-96
    [35]
    Lin, H., Ashikari, M., Yamanouchi, U. et al. Breed. Sci., 52 (2002),pp. 35-41
    [36]
    Lin, H.X., Qian, H.R., Zhuang, J.Y. et al. Theor. Appl. Genet., 92 (1996),pp. 920-927
    [37]
    Lin, H.X., Zhu, M.Z., Yano, M. et al. Theor. Appl. Genet., 108 (2004),pp. 253-260
    [38]
    Lin, S.Y., Sasaki, T., Yano, M. Theor Appl Genet, 96 (1998),pp. 997-1003
    [39]
    Liu, G., Zhang, Z., Zhu, H. et al. Theor. Appl. Genet., 116 (2008),pp. 923-931
    [40]
    Maeda, H., Ishii, T., Mori, H. et al. Breed. Sci., 47 (1997),pp. 317-320
    [41]
    Maheswaran, M., Huang, N., Sreerangasamy, S.R. et al. Mol. Breed., 6 (2000),pp. 145-155
    [42]
    Matsubara, K., Kono, I., Hori, K. et al. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars Theor. Appl. Genet., 117 (2008),pp. 935-945
    [43]
    McCouch, S.R., Chen, X., Panaud, O. et al. Microsatellite marker development, mapping and applications in rice genetics and breeding Plant Mol. Biol., 35 (1997),pp. 89-99
    [44]
    McCouch, S.R., Teytelman, L., Xu, Y. et al. DNA Res., 9 (2002),pp. 199-207
    [45]
    Miura, K., Ikeda, M., Matsubara, A. et al. Nat. Genet., 42 (2010),pp. 545-549
    [46]
    Mohan, M., Nair, S., Bentur, J.S. et al. Theor. Appl. Genet., 87 (1994),pp. 782-788
    [47]
    Monna, L., Lin, X., Kojima, S. et al. Theor. Appl. Genet., 104 (2002),pp. 772-778
    [48]
    Monna, L., Kitazawa, N., Yoshino, R. et al. DNA Res., 9 (2002),pp. 11-17
    [49]
    Nasu, S., Suzuki, J., Ohta, R. et al. DNA Res., 9 (2002),pp. 163-171
    [50]
    Nemoto, K., Ukai, Y., Tang, D.Q. et al. Inheritance of early elongation ability in floating rice revealed by diallel and QTL analyses Theor. Appl. Genet., 109 (2004),pp. 42-47
    [51]
    Project, I.R.G.S. The map-based sequence of the rice genome Nature, 436 (2005),pp. 793-800
    [52]
    Rafalski, A. Applications of single nucleotide polymorphisms in crop genetics Curr. Opin. Plant Biol., 5 (2002),pp. 94-100
    [53]
    Ren, Z.H., Gao, J.P., Li, L.G. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter Nat. Genet., 37 (2005),pp. 1141-1146
    [54]
    Sallaud, C., Lorieux, M., Roumen, E. et al. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy Theor. Appl. Genet., 106 (2003),pp. 794-803
    [55]
    Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M. et al. Green revolution: a mutant gibberellin-synthesis gene in rice Nature, 416 (2002),pp. 701-702
    [56]
    Septiningsih, E.M., Trijatmiko, K.R., Moeljopawiro, S. et al. Theor. Appl. Genet., 107 (2003),pp. 1433-1441
    [57]
    Shomura, A., Izawa, T., Ebana, K. et al. Deletion in a gene associated with grain size increased yields during rice domestication Nat. Genet., 40 (2008),pp. 1023-1028
    [58]
    Song, X.J., Huang, W., Shi, M. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase Nat Genet, 39 (2007),pp. 623-630
    [59]
    Sripongpangkul, K., Posa, G.B.T., Senadhira, D.W. et al. Genes/QTLs affecting flood tolerance in rice Theor. Appl. Genet., 101 (2000),pp. 1074-1081
    [60]
    Sun, S., Hao, W., ad Lin, H. Identification of QTLs for cooking and eating quality of rice grain Rice Sci., 13 (2006),pp. 161-169
    [61]
    Takahashi, Y., Shomura, A., Sasaki, T. et al. Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 7922-7927
    [62]
    Tan, L., Li, X., Liu, F. et al. Control of a key transition from prostrate to erect growth in rice domestication Nat. Genet., 40 (2008),pp. 1360-1364
    [63]
    Tian, F., Li, D.J., Fu, Q. et al. Theor. Appl. Genet., 112 (2006),pp. 570-580
    [64]
    Tsuji, H., Tamaki, S., Komiya, R. et al. Florigen and the photoperiodic control of flowering in rice Rice, 1 (2008),pp. 25-35
    [65]
    Wan, X., Weng, J., Zhai, H. et al. Genetics, 179 (2008),pp. 2239-2252
    [66]
    Wan, X.Y., Wan, J.M., Su, C.C. et al. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines Theor. Appl. Genet., 110 (2004),pp. 71-79
    [67]
    Wan, X.Y., Wan, J.M., Jiang, L. et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects Theor. Appl. Genet., 112 (2006),pp. 1258-1270
    [68]
    Wang, Y., Li, J. Rice, rising Nat. Genet., 40 (2008),pp. 1273-1275
    [69]
    Weng, J., Gu, S., Wan, X. et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight Cell Res., 18 (2008),pp. 1199-1209
    [70]
    Wissuwa, M., Ae, N. Plant Soil., 237 (2001),pp. 275-286
    [71]
    Wissuwa, M., Ismail, A.M., Yanagihara, S. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance Plant Physiol., 142 (2006),pp. 731-741
    [72]
    Xing, Y.Z., Tang, W.J., Xue, W.Y. et al. Theor. Appl. Genet., 116 (2008),pp. 789-796
    [73]
    Xing, Y., Zhang, Q. Genetic and molecular bases of rice yield Annu. Rev. Plant Biol., 61 (2010),pp. 421-442
    [74]
    Xiong, L.Z., Liu, K.D., Dai, X.K. et al. Theor. Appl. Genet., 98 (1999),pp. 243-251
    [75]
    Xu, K., Xu, X., Fukao, T. et al. Nature, 442 (2006),pp. 705-708
    [76]
    Xue, W., Xing, Y., Weng, X. et al. Nat. Genet., 40 (2008),pp. 761-767
    [77]
    Yamamoto, T., Lin, H., Sasaki, T. et al. Genetics, 154 (2000),pp. 885-891
    [78]
    Yano, M., Harushima, Y., Nagamura, Y. et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map Theor. Appl. Genet., 95 (1997),pp. 1025-1032
    [79]
    Yano, M., Katayose, Y., Ashikari, M. et al. Plant Cell, 12 (2000),pp. 2473-2483
    [80]
    You, A., Lu, X., Jin, H. et al. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice Genetics, 172 (2006),pp. 1287-1300
    [81]
    Yu, B., Lin, Z., Li, H. et al. Plant J., 52 (2007),pp. 891-898
    [82]
    Yu, J., Hu, S., Wang, J. et al. Science, 296 (2002),pp. 79-92
    [83]
    Yue, B., Xue, W., Xiong, L. et al. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance Genetics, 172 (2006),pp. 1213-1228
    [84]
    Zhang, G., Angeles, E.R., Abenes, M.L.P. et al. Theor. Appl. Genet., 93 (1996),pp. 65-70
    [85]
    Zhang, J., Zheng, H.G., Aarti, A. et al. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species Theor. Appl. Genet., 103 (2001),pp. 19-29
    [86]
    Zhang, Q. Strategies for developing Green Super Rice Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 16402-16409
    [87]
    Zhang, X., Zhou, S., Fu, Y. et al. Plant Mol. Biol., 62 (2006),pp. 247-259
    [88]
    Zhuang, J.Y., Lin, H.X., Lu, J. et al. Analysis of QTL × environment interaction for yield components and plant height in rice Theor. Appl. Genet., 95 (1997),pp. 799-808
    [89]
    Zou, J.H., Pan, X.B., Chen, Z.X. et al. Theor. Appl. Genet., 101 (2000),pp. 569-573
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (67) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return