5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 8
Aug.  2010
Turn off MathJax
Article Contents

Novel pleiotropic loci controlling panicle architecture across environments in japonica rice (Oryza sativa L.)

doi: 10.1016/S1673-8527(09)60073-4
More Information
  • Corresponding author: E-mail address: delinhong@njau.edu.cn (Delin Hong)
  • Received Date: 2009-11-21
  • Accepted Date: 2010-04-23
  • Rev Recd Date: 2010-03-11
  • Available Online: 2010-09-01
  • Publish Date: 2010-08-20
  • To identify quantitative trait loci (QTLs) controlling panicle architecture in japonica rice, a genetic map was constructed based on simple sequence repeat (SSR) markers and 254 recombinant inbred lines (RILs) derived from a cross between cultivars Xiushui 79 and C Bao. Seven panicle traits were investigated under three environments. Single marker analysis indicated that a total of 27 SSR markers were highly associated with panicle traits in all the three environments. Percentage of phenotypic variation explained by single locus varied from 2% to 35%. Based on the mixed linear model, a total of 40 additive QTLs for seven panicle traits were detected by composite interval mapping, explaining 1.2%–35% of phenotypic variation. Among the 9 QTLs with more than 10% of explained phenotypic variation, two QTLs were for the number of primary branches per panicle (NPB), two for panicle length (PL), two for spikelet density (SD), one for the number of secondary branches per panicle (NSB), one for secondary branch distribution density (SBD), and one for the number of spikelets per panicle (NS), respectively. qPLSD-9-1 and qPLSD-9-2 were novel pleiotropic loci, showing effects on PL and SD simultaneously. qPLSD-9-1 explained 34.7% of the phenotypic variation for PL and 25.4% of the phenotypic variation for SD, respectively. qPLSD-9-2 explained 34.9% and 24.4% of the phenotypic variation for PL and SD, respectively. The C Bao alleles at the both QTLs showed positive effects on PL, and the Xiushui 79 alleles at the both QTLs showed positive effects on SD. Genetic variation of panicle traits are mainly attributed to additive effects. QTL × environment interactions were not significant for additive QTLs and additive × additive QTL pairs.
  • loading
  • [1]
    Ashikari, M., Sakakibara, H., Lin, S.Y. et al. Cytokinin oxidase regulates rice grain production Science, 309 (2005),pp. 741-745
    [2]
    Chen, X.G., Liu, J.B., Hong, D.L. Acta. Agron. Sin., 32 (2006),pp. 1143-1150
    [3]
    Guo, Y., Wan, Z.B., Chen, X.G. et al. J. Nanjing. Agri. Univ. (Natural Science), 31 (2008),pp. 8-12
    [4]
    Guo, Y., Cheng, B.S., Hong, D.L. Chin. J. Rice. Sci., 23 (2009),pp. 245-251
    [5]
    Jiang, J.H., Guo, Y., Chen, X.G. et al. Hereditas (Beijing), 29 (2007),pp. 714-724
    [6]
    Jing, Y.H., Fu, Y.C., Sun, C.Q. et al. J. Chin. Agri. Univ. (Natural Science), 9 (2004),pp. 16-21
    [7]
    Hirota, O., Oka, M., Takeda, T. Ann. Bot., 65 (1990),pp. 349-353
    [8]
    Huang, X.Z., Qian, Q., Liu, Z.B. et al. Nat. Genet., 41 (2009),pp. 494-497
    [9]
    Lander, E.S., Green, P., Abrahamson, J. et al. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations Genomics, 1 (1987),pp. 174-181
    [10]
    Li, Z.K., Pinson, S.R.M., Park, W.D. et al. Genetics, 145 (1997),pp. 453-465
    [11]
    Li, C.B., Zhou, A.L., Sang, T. New Phytol., 170 (2006),pp. 185-194
    [12]
    Liao, C.Y., Wu, P., Hu, B. et al. Theor. Appl. Genet., 103 (2001),pp. 104-111
    [13]
    Lin, H.X., Qian, H.R., Zhuang, J.Y. et al. Theor. Appl. Genet., 92 (1996),pp. 920-927
    [14]
    Liu, R.H., Meng, J.L. MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data Hereditas (Beijing), 25 (2003),pp. 317-321
    [15]
    Liu, J.B., Hong, D.L. Chin. J. Rice. Sci., 19 (2005),pp. 223-230
    [16]
    Liu, T.M., Mao, D.H., Zhang, S.P. et al. Theor. Appl. Genet., 118 (2009),pp. 1509-1517
    [17]
    Liu, B.L., Chen, S.Q., Dong, D. et al. Study on the relationship between rice plant type and false smut of rice HuBei. Agri. Sci., 48 (2009),pp. 42-46
    [18]
    Lü, W.Y., Cao, P., Shao, G.J. et al. Liaoning. Agri. Sci., 5 (1997),pp. 7-11
    [19]
    McCouch, S.R., Cho, Y.G., Yano, M. Report on QTL nomenclature Rice Genet. Newsl., 14 (1997),pp. 11-14
    [20]
    Mei, H.W., Li, Z.K., Shu, Q.Y. et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations Theor. Appl. Genet., 110 (2005),pp. 649-659
    [21]
    Nagata, K., Fukuta, Y., Shimizu, H. et al. Breed. Sci., 52 (2002),pp. 259-273
    [22]
    Piao, R.H., Jiang, W.Z., Ham, T.H. et al. Theor. Appl. Genet., 119 (2009),pp. 1497-1506
    [23]
    Shen, X.H., Cao, L.Y., Chen, S.G. et al. Dissection of QTLs for panicle traits in recombinant inbred lines derived from super hybrid rice, Xieyou 9308 Chin. J. Rice. Sci., 23 (2009),pp. 354-362
    [24]
    Teng, S., Qian, Q., Zeng, D.L. et al. QTL analysis of rice peduncle vascular bundle system and panicle traits Acta. Bot. Sin., 44 (2002),pp. 301-306
    [25]
    Tian, F., Zhu, Z.F., Zhang, B.S. et al. Theor. Appl. Genet., 113 (2006),pp. 619-629
    [26]
    Xiao, J., Li, J., Yuan, L. et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross Theor. Appl. Genet., 92 (1996),pp. 230-244
    [27]
    Xing, Y.Z., Xu, C.G., Hua, J.P. et al. Analysis of QTL×environment interaction for rice panicle characteristics Acta. Genet. Sin., 28 (2001),pp. 439-446
    [28]
    Xing, Y.Z., Tan, Y.F., Hua, J.P. et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice Theor. Appl. Genet., 105 (2002),pp. 248-257
    [29]
    Xing, Y.Z., Tang, W.J., Xue, W.Y. et al. Theor. Appl. Genet., 116 (2008),pp. 789-796
    [30]
    Xiong, L.Z., Liu, K.D., Dai, X.K. et al. Theor. Appl. Genet., 98 (1999),pp. 243-251
    [31]
    Xue, W.Y., Xing, Y.Z., Weng, X.U. et al. Nat. Genet., 40 (2008),pp. 761-767
    [32]
    Yamagishi, M., Takeuchi, Y., Kono, I. et al. Euphytica, 128 (2002),pp. 219-224
    [33]
    Yamagishi, J., Miyamoto, N., Hirotsu, S. et al. Theor. Appl. Genet., 109 (2004),pp. 1555-1561
    [34]
    Yan, C.J., Zhou, J.H., Yan, S. et al. Appl. Genet., 115 (2007),pp. 1093-1100
    [35]
    Yang, J., Zhong, W.G., Zhang, Z.L. et al. Jiangsu. Agri. Sci., 3 (1999),pp. 6-8
    [36]
    Yang, J., Zhu, J., Williams, R.W. Mapping the genetic architecture of complex traits in experimental populations Bioinformatics, 23 (2007),pp. 1527-1536
    [37]
    Yang, J., Hu, C.C., Hu, H. et al. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations Bioinformatics, 24 (2008),pp. 721-723
    [38]
    Yu, S.B., Li, J.X., Tan, Y.F. et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 9226-9231
    [39]
    Zeng, Z.B. Precision mapping of quantitative trait loci Genetics, 136 (1994),pp. 1457-1468
    [40]
    Zhu, K.M., Tang, D., Yan, C.J. et al. Genetics, 184 (2010),pp. 343-350
    [41]
    Zhuang, J.Y., Lin, H.X., Lu, J. et al. Analysis of QTL×environment interaction for yield components and plant height in rice Theor. Appl. Genet., 95 (1997),pp. 799-808
    [42]
    Zhuang, J.Y., Fan, Y.Y., Rao, Z.M. et al. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice Theor. Appl. Genet., 105 (2002),pp. 1137-1145
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (67) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return