[1] |
Abasht, B., Dekkers, J.C., Lamont, S. Review of quantitative trait loci identified in the chicken Poult. Sci., 85 (2006),pp. 2079-2096
|
[2] |
Abasht, B., Lamont, S.J. Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population Anim. Genet., 38 (2007),pp. 491-498
|
[3] |
Abu-Elheiga, L., Matzuk, M.M., Kordari, P. et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal Proc. Natl. Acad. Sci. USA, 34 (2005),pp. 12011-12016
|
[4] |
Alvarez-Castro, J.M., Carlborg, O. A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis Genetics, 176 (2007),pp. 1151-1167
|
[5] |
Alvarez-Castro, J.M., Le Rouzic, A., Carlborg, O. How to perform meaningful estimates of genetic effects PLoS Genet., 4 (2008),p. e1000062
|
[6] |
Carlborg, O., Kerje, S., Schütz, K. et al. A global search reveals epistatic interaction between QTL for early growth in the chicken Genome Res., 13 (2003),pp. 413-421
|
[7] |
Carlborg, O., Haley, C.S. Epistasis: too often neglected in complex trait studies? Nat Rev. Genet., 5 (2004),pp. 618-625
|
[8] |
Carlborg, O., Jacobsson, L., Ahgren, P. et al. Epistasis and the release of genetic variation during long-term selection Nat. Genet., 38 (2006),pp. 418-420
|
[9] |
Carter, A.J., Hermisson, J., Hansen, T.F. The role of epistatic gene interactions in the response to selection and the evolution of evolvability Theor. Popul. Biol., 68 (2005),pp. 179-196
|
[10] |
Chu, L., Wang, Q., Guan, T. et al. Journal of Northeast Agricultural University, 39 (2008),pp. 70-74
|
[11] |
Cockerham, C.C. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present Genetics, 39 (1954),pp. 859-882
|
[12] |
Estellé, J., Gil, F., Vázquez, J.M. et al. A quantitative trait locus genome scan for porcine muscle fiber traits reveals overdominance and epistasis J. Anim. Sci., 86 (2008),pp. 3290-3299
|
[13] |
Estellé, J., Mercadé, A., Pérez-Enciso, M. et al. J. Anim. Breed Genet., 126 (2009),pp. 52-58
|
[14] |
Fisher, R.A. The correlation between relatives on the supposition of Mendelian inheritance Trans. Roy. Soc. Edin., 52 (1918),pp. 399-433
|
[15] |
Gallardo, D., Quintanilla, R., Varona, L. et al. Polymorphism of the pig acetyl-coenzyme A carboxylase alpha gene is associated with fatty acid composition in a Duroc commercial line Anim. Genet., 40 (2009),pp. 410-417
|
[16] |
Griffin, H.
|
[17] |
Hansen, T.F., Wagner, G.P. Modeling genetic architecture: a multilinear model of gene interaction Theor. Popul. Biol., 59 (2001),pp. 61-86
|
[18] |
Havenstein, G.B., Ferket, P.R., Qureshi, M.A. Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets Poult. Sci., 82 (2003),pp. 1509-1518
|
[19] |
Hu, G., Wang, S.Z., Zhang, S. et al. Hereditas (Beijing), 32 (2010),pp. 59-66
|
[20] |
Hillgartner, F.B., Charron, T., Chesnut, K.A. Alterations in nutritional status regulate acetyl-CoA carboxylase expression in avian liver by a transcriptional mechanism Biochem. J., 319 (1996),pp. 263-268
|
[21] |
Jennen, D.G., Vereijken, A.L., Bovenhuis, H. et al. Detection and localization of quantitative trait loci affecting fatness in broilers Poult. Sci., 83 (2004),pp. 295-301
|
[22] |
Kao, C.H., Zeng, Z.B. Modeling epistasis of quantitative trait loci using Cockerham's model Genetics, 160 (2002),pp. 1243-1261
|
[23] |
Kempthorne, O. The correlation between relatives in a random mating population Proc. R. Soc. Lond. B. Biol. Sci., 143 (1954),pp. 102-113
|
[24] |
Koning, D.J., Hocking, P.M.
|
[25] |
Lagarrigue, S., Pitel, F., Carre, W. et al. Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness Genet. Sel. Evol., 38 (2006),pp. 85-97
|
[26] |
Le Rouzic, A., Siegel, P.B., Carlborg, O. Phenotypic evolution from genetic polymorphisms in a radial network architecture BMC Biol., 5 (2007),p. 50
|
[27] |
Le Rouzic, A., Alvarez-Castro, J.M. Estimation of genetic effects and genotype-phenotype maps Evol. Bioinform. Online, 4 (2008),pp. 225-235
|
[28] |
Le Rouzic, A., Alvarez-Castro, J.M., Carlborg, O. Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits Genetics, 179 (2008),pp. 1591-1599
|
[29] |
Le Mignon, G., Pitel, F., Gilbert, H. et al. A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach Anim. Genet., 40 (2009),pp. 157-164
|
[30] |
Liu, X., Li, H., Wang, S. et al. Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one Poult. Sci., 86 (2007),pp. 1084-1089
|
[31] |
Ma, L., Dvorkin, D., Garbe, J.R. et al. Genome-wide analysis of single-locus and epistasis single-nucleotide polymorphism effects on anti-cyclic citrullinated peptide as a measure of rheumatoid arthritis BMC Proc., 1 (2007),p. S127
|
[32] |
Mallard, J., Douaire, M.
|
[33] |
Mao, Y., London, N.R., Ma, L. et al. Detection of SNP epistasis effects of quantitative traits using an extended Kempthorne model Physiol. Genomics, 28 (2006),pp. 46-52
|
[34] |
Pisabarro, A.G., Pérez, G., Lavín, J.L. et al. Genetic networks for the functional study of genomes Brief. Funct. Genomic. Proteomic., 7 (2008),pp. 249-263
|
[35] |
R Development Core Team. (2007). A Language and Environment for Statistical Computing. R. Foundation for Statistical Computing, Vienna, Austria. ISBN. 3-900051-07-0.
|
[36] |
Takai, T., Yokoyama, C., Wada, K. et al. Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence J. Biol. Chem., 263 (1988),pp. 2651-2657
|
[37] |
Tian, J., Wang, S., Wang, Q. et al. A single nucleotide polymorphism of chicken acetyl-CoA carboxylase A gene associated with fatness traits Anim. Biotechnol., 21 (2010),pp. 42-50
|
[38] |
Tong, L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery Cell Mol. Life Sci., 62 (2005),pp. 1784-1803
|
[39] |
Wang, Q., Li, H., Liu, S. et al. Cloning and tissue expression of chicken heart fatty acid-binding protein and intestine fatty acid-binding protein genes Anim. Biotechnol., 16 (2005),pp. 191-201
|
[40] |
Wang, T., Zeng, Z.B. Models and partition of variance for quantitative trait loci with epistasis and linkage disequilibrium BMC Genet., 7 (2006),p. 9
|
[41] |
Warden, C.H., Yi, N., Fisler, J. Epistasis among genes is a universal phenomenon in obesity: evidence from rodent models Nutrition, 20 (2004),pp. 74-77
|
[42] |
Yang, R.C. Epistasis of quantitative trait loci under different gene action models Genetics, 167 (2004),pp. 1493-1505
|
[43] |
Zeng, Z., Wang, T., Zou, W. Modeling quantitative trait loci and interpretation of models Genetics, 169 (2005),pp. 1711-1725
|
[44] |
Zhang, H., Wang, S., Li, H. et al. Microsatellite markers linked to quantitative trait loci affecting fatness in divergently selected chicken lines for abdominal fat Asian-Aust. J. Anim. Sci., 21 (2008),pp. 1389-1394
|