5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 8
Aug.  2010
Turn off MathJax
Article Contents

Potential coexistence of both bacterial and eukaryotic small RNA biogenesis and functional related protein homologs in Archaea

doi: 10.1016/S1673-8527(09)60069-2
More Information
  • Corresponding author: E-mail address: guohs@im.ac.cn (Huishan Guo); E-mail address: xjwang@genetics.ac.cn (Xiu-Jie Wang)
  • Received Date: 2010-04-30
  • Accepted Date: 2010-06-16
  • Rev Recd Date: 2010-06-12
  • Available Online: 2010-09-01
  • Publish Date: 2010-08-20
  • RNA silencing plays crucial roles in both bacteria and eukaryotes, yet its machinery appears to differ in these two kingdoms. A couple of Argonaute protein homologs have been reported in some archaeal species in recent years. As Argonaute protein is the key component of eukaryotic RNA silencing pathways, such findings suggested the possibility of existence of eukaryotic RNA silencing like pathways in Archaea, which present the life forms between prokaryotes and eukaryotes. To further explore such hypothesis, we systematically screened 71 fully sequenced archaeal genomes, and identified some proteins containing homologous regions to the functional domains of eukaryotic RNA silencing pathway key proteins. The phylogenetic relationships of these proteins were analyzed. The conserved functional amino acids between archaeal and eukaryotic Piwi domains suggested their functional similarity. Our results provide new clues to the evolution of RNA silencing pathways.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
    [2]
    Borsani, O., Zhu, J., Verslues, P.E. et al. Cell, 123 (2005),pp. 1279-1291
    [3]
    Brown, J.R., Doolittle, W.F. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 2441-2445
    [4]
    Capodici, J., Kariko, K., Weissman, D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference J. Immunol., 169 (2002),pp. 5196-5201
    [5]
    Carmell, M.A., Hannon, G.J. RNase III enzymes and the initiation of gene silencing Nat. Struct. Mol. Biol., 11 (2004),pp. 214-218
    [6]
    Carmell, M.A., Xuan, Z., Zhang, M.Q. et al. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis Genes Dev., 16 (2002),pp. 2733-2742
    [7]
    Crouch, R.J., Arudchandran, A., Cerritelli, S.M. Methods Enzymol., 341 (2001),pp. 395-413
    [8]
    Eddy, S.R. Non-coding RNA genes and the modern RNA world Nat. Rev. Genet., 2 (2001),pp. 919-929
    [9]
    Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res., 32 (2004),pp. 1792-1797
    [10]
    Edgar, R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity BMC Bioinformatics, 5 (2004),pp. 113-131
    [11]
    Edgell, D.R., Klenk, H.P., Doolittle, W.F. Gene duplications in evolution of archaeal family B DNA polymerases J. Bacteriol., 179 (1997),pp. 2632-2640
    [12]
    Fire, A., Xu, S., Montgomery, M.K. et al. Nature, 391 (1998),pp. 806-811
    [13]
    Girard, A., Sachidanandam, R., Hannon, G.J. et al. A germline-specific class of small RNAs binds mammalian Piwi proteins Nature, 442 (2006),pp. 199-202
    [14]
    Gogarten, J.P., Kibak, H., Dittrich, P. et al. Proc. Natl Acad. Sci. USA, 86 (1989),pp. 6661-6665
    [15]
    Grissa, I., Vergnaud, G., Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats BMC Bioinformatics, 8 (2007),p. 172
    [16]
    Haft, D.H., Selengut, J., Mongodin, E.F. et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes PLoS Comput. Biol., 1 (2005),p. e60
    [17]
    Hale, C.R., Zhao, P., Olson, S. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell, 139 (2009),pp. 945-956
    [18]
    He, L., Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation Nat. Rev. Genet., 5 (2004),pp. 522-531
    [19]
    Hutvagner, G., Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex Science, 297 (2002),pp. 2056-2060
    [20]
    Iwabe, N., Kuma, K., Hasegawa, M. et al. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes Proc. Natl. Acad. Sci. USA, 86 (1989),pp. 9355-9359
    [21]
    Jin, L., Kryukov, K., Suzuki, Y. et al. The evolutionary study of small RNA-directed gene silencing pathways by investigating RNase III enzymes Gene, 435 (2009),pp. 1-8
    [22]
    Kumar, S., Nei, M., Dudley, J. et al. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences Brief. Bioinformatics, 9 (2008),pp. 299-306
    [23]
    Lee, Y., Ahn, C., Han, J. et al. The nuclear RNase III Drosha initiates microRNA processing Nature, 425 (2003),pp. 415-419
    [24]
    Lillestol, R.K., Redder, P., Garrett, R.A. et al. A putative viral defence mechanism in archaeal cells Archaea, 2 (2006),pp. 59-72
    [25]
    Londei, P. Evolution of translational initiation: new insights from the archaea FEMS Microbiol. Rev., 29 (2005),pp. 185-200
    [26]
    Ma, J.B., Yuan, Y.R., Meister, G. et al. Nature, 434 (2005),pp. 666-670
    [27]
    Makarova, K.S., Grishin, N.V., Shabalina, S.A. et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action Biol. Direct., 1 (2006),p. 7
    [28]
    Marchler-Bauer, A., Anderson, J.B., Chitsaz, F. et al. CDD: specific functional annotation with the Conserved Domain Database Nucleic Acids Res., 37 (2009),pp. D205-D210
    [29]
    Martianov, I., Ramadass, A., Serra Barros, A. et al. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript Nature, 445 (2007),pp. 666-670
    [30]
    Masse, E., Escorcia, F.E., Gottesman, S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli Genes Dev., 17 (2003),pp. 2374-2383
    [31]
    Mojica, F.J., Diez-Villasenor, C., Soria, E. et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria Mol. Microbiol., 36 (2000),pp. 244-246
    [32]
    Ohtani, N., Yanagawa, H., Tomita, M. et al. Cleavage of double-stranded RNA by RNase HI from a thermoacidophilic archaeon, Sulfolobus tokodaii 7 Nucleic Acids Res., 32 (2004),pp. 5809-5819
    [33]
    Parker, J.S., Roe, S.M., Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex Nature, 434 (2005),pp. 663-666
    [34]
    Provost, P., Dishart, D., Doucet, J. et al. Ribonuclease activity and RNA binding of recombinant human Dicer EMBO J., 21 (2002),pp. 5864-5874
    [35]
    Saitou, N., Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees Mol. Biol. Evol., 4 (1987),pp. 406-425
    [36]
    Schwarz, D.S., Hutvagner, G., Du, T. et al. Asymmetry in the assembly of the RNAi enzyme complex Cell, 115 (2003),pp. 199-208
    [37]
    Song, J.J., Smith, S.K., Hannon, G.J. et al. Crystal structure of Argonaute and its implications for RISC slicer activity Science, 305 (2004),pp. 1434-1437
    [38]
    Song, J.J., Liu, J., Tolia, N.H. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes Nat. Struct. Biol., 10 (2003),pp. 1026-1032
    [39]
    Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res., 22 (1994),pp. 4673-4680
    [40]
    Valentin-Hansen, P., Eriksen, M., Udesen, C. The bacterial Sm-like protein Hfq: a key player in RNA transactions Mol. Microbiol., 51 (2004),pp. 1525-1533
    [41]
    van der Oost, J., Jore, M.M., Westra, E.R. et al. CRISPR-based adaptive and heritable immunity in prokaryotes Trends Biochem. Sci., 34 (2009),pp. 401-407
    [42]
    Vogel, J., Bartels, V., Tang, T.H. et al. Nucleic Acids Res., 31 (2003),pp. 6435-6443
    [43]
    Voinnet, O. Origin, biogenesis, and activity of plant microRNAs Cell, 136 (2009),pp. 669-687
    [44]
    Waterhouse, P.M., Fusaro, A.F. Plant science. Viruses face a double defense by plant small RNAs Science, 313 (2006),pp. 54-55
    [45]
    Woese, C.R., Kandler, O., Wheelis, M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 4576-4579
    [46]
    Yang, Q., Jankowsky, E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1 Biochemistry, 44 (2005),pp. 13591-13601
    [47]
    Zhang, H., Kolb, F.A., Jaskiewicz, L. et al. Single processing center models for human Dicer and bacterial RNase III Cell, 118 (2004),pp. 57-68
    [48]
    Zhao, T., Li, G., Mi, S. et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii Genes Dev., 21 (2007),pp. 1190-1203
    [49]
    Zillig, W., Klenk, H.P., Palm, P. et al. The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes, and eubacteria Can. J. Microbiol., 35 (1989),pp. 73-80
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (63) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return