[1] |
Arai, K., Takano, S., Teratani, T. et al. S100A8 and S100A9 overexpression is associated with poor pathological parameters in invasive ductal carcinoma of the breast. Curr Cancer Drug Targets, 8 (2008),pp. 243-252
|
[2] |
Balkwill, F., Mantovani, A. Inflammation and cancer: back to Virchow? Lancet, 357 (2001),pp. 539-545
|
[3] |
Belotti, D., Paganoni, P., Manenti, L. et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation Cancer Res., 63 (2003),pp. 5224-5229
|
[4] |
Bosco, M.C., Puppo, M., Blengio, F. et al. Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration Immunobiology, 213 (2008),pp. 733-749
|
[5] |
Bronte, V., Kasic, T., Gri, G. et al. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers J. Exp. Med., 201 (2005),pp. 1257-1268
|
[6] |
Bunt, S.K., Sinha, P., Clements, V.K. et al. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression J. Immunol., 176 (2006),pp. 284-290
|
[7] |
Cauley, L.S., Miller, E.E., Yen, M. et al. Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-gamma J. Immunol., 165 (2000),pp. 6056-6066
|
[8] |
Clark, C.E., Hingorani, S.R., Mick, R. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion Cancer Res., 67 (2007),pp. 9518-9527
|
[9] |
Clarke, M.F., Dick, J.E., Dirks, P.B. et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells Cancer Res., 66 (2006),pp. 9339-9344
|
[10] |
Dean, R.A., Butler, G.S., Hamma-Kourbali, Y. et al. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis Mol. Cell Biol., 27 (2007),pp. 8454-8465
|
[11] |
DeNardo, D.G., Barreto, J.B., Andreu, P. et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages Cancer Cell, 16 (2009),pp. 91-102
|
[12] |
Dhodapkar, M.V., Dhodapkar, K.M., Palucka, A.K. Interactions of tumor cells with dendritic cells: balancing immunity and tolerance Cell Death Differ., 15 (2008),pp. 39-50
|
[13] |
Dolcetti, L., Marigo, I., Mantelli, B. et al. Myeloid-derived suppressor cell role in tumor-related inflammation Cancer Lett, 267 (2008),pp. 216-225
|
[14] |
Du, R., Lu, K.V., Petritsch, C. et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion Cancer Cell, 13 (2008),pp. 206-220
|
[15] |
Friedlander, M., Dorrell, M.I., Ritter, M.R. et al. Progenitor cells and retinal angiogenesis Angiogenesis, 10 (2007),pp. 89-101
|
[16] |
Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects Nat. Rev. Immunol., 4 (2004),pp. 941-952
|
[17] |
Gabrilovich, D., Ishida, T., Oyama, T. et al. Blood, 92 (1998),pp. 4150-4166
|
[18] |
Gabrilovich, D.I., Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system Nat. Rev. Immunol., 9 (2009),pp. 162-174
|
[19] |
Gabrilovich, D.I., Chen, H.L., Girgis, K.R. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells Nat. Med., 2 (1996),pp. 1096-1103
|
[20] |
Gilbertson, R.J., Rich, J.N. Making a tumour's bed: glioblastoma stem cells and the vascular niche Nat. Rev. Cancer, 7 (2007),pp. 733-736
|
[21] |
Hiratsuka, S., Watanabe, A., Aburatani, H. et al. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis Nat. Cell Biol., 8 (2006),pp. 1369-1375
|
[22] |
Huang, B., Pan, P.Y., Li, Q. et al. Cancer Res., 66 (2006),pp. 1123-1131
|
[23] |
Huysentruyt, L.C., Mukherjee, P., Banerjee, D. et al. Metastatic cancer cells with macrophage properties: evidence from a new murine tumor model Int. J. Cancer, 123 (2008),pp. 73-84
|
[24] |
Ilkovitch, D., Lopez, D.M. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression Cancer Res., 69 (2009),pp. 5514-5521
|
[25] |
Jin, D.K., Shido, K., Kopp, H.G. et al. Nat. Med., 12 (2006),pp. 557-567
|
[26] |
Kerbel, R.S., Yu, J., Tran, J. et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches Cancer Metastasis Rev., 20 (2001),pp. 79-86
|
[27] |
Kitamura, T., Kometani, K., Hashida, H. et al. Nat. Genet., 39 (2007),pp. 467-475
|
[28] |
Kujawski, M., Kortylewski, M., Lee, H. et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice J. Clin. Invest., 118 (2008),pp. 3367-3377
|
[29] |
Lakka, S.S., Gondi, C.S., Yanamandra, N. et al. Oncogene, 23 (2004),pp. 4681-4689
|
[30] |
LeCouter, J., Zlot, C., Tejada, M. et al. Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 16813-16818
|
[31] |
Lee, J., Kotliarova, S., Kotliarov, Y. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines Cancer Cell, 9 (2006),pp. 391-403
|
[32] |
Li, H., Han, Y., Guo, Q. et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1 J. Immunol., 182 (2009),pp. 240-249
|
[33] |
Li, L., Neaves, W.B. Normal stem cells and cancer stem cells: the niche matters Cancer Res., 66 (2006),pp. 4553-4557
|
[34] |
Liao, D., Luo, Y., Markowitz, D. et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model PLoS One, 4 (2009),p. e7965
|
[35] |
Maier, T., Holda, J.H., Claman, H.N. Natural suppressor cells Prog. Clin. Biol. Res., 288 (1989),pp. 235-244
|
[36] |
Maloy, K.J., Powrie, F. Regulatory T cells in the control of immune pathology Nat. Immunol., 2 (2001),pp. 816-822
|
[37] |
Marigo, I., Dolcetti, L., Serafini, P. et al. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells Immunol. Rev., 222 (2008),pp. 162-179
|
[38] |
Mielczarek-Puta, M., Grabon, W., Chrzanowska, A. et al. Arginase and arginine in diagnostics of patients with colorectal cancer and patients with colorectal cancer liver metastases Wspolczesna Onkologia-Contemporary Oncology, 12 (2008),pp. 51-55
|
[39] |
Mira, E., Lacalle, R.A., Buesa, J.M. et al. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface J. Cell Sci., 117 (2004),pp. 1847-1857
|
[40] |
Movahedi, K., Guilliams, M., Van den Bossche, J. et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity Blood, 111 (2008),pp. 4233-4244
|
[41] |
Mumenthaler, S.M., Yu, H., Tze, S. et al. Expression of arginase II in prostate cancer Int. J. Oncol., 32 (2008),pp. 357-365
|
[42] |
Murdoch, C., Muthana, M., Coffelt, S.B. et al. The role of myeloid cells in the promotion of tumour angiogenesis Nat. Rev. Cancer, 8 (2008),pp. 618-631
|
[43] |
Nagaraj, S., Gupta, K., Pisarev, V. et al. Nat. Med., 13 (2007),pp. 828-835
|
[44] |
Ostrand-Rosenberg, S., Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer J. Immunol., 182 (2009),pp. 4499-4506
|
[45] |
Oyama, T., Ran, S., Ishida, T. et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells J. Immunol., 160 (1998),pp. 1224-1232
|
[46] |
Pan, P.Y., Ozao, J., Zhou, Z. et al. Advancements in immune tolerance Adv. Drug Deliv. Rev., 60 (2008),pp. 91-105
|
[47] |
Pan, P.Y., Wang, G.X., Yin, B. et al. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function Blood, 111 (2008),pp. 219-228
|
[48] |
Pawelek, J.M., Chakraborty, A.K. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat. Rev Cancer, 8 (2008),pp. 377-386
|
[49] |
Pekarek, L.A., Starr, B.A., Toledano, A.Y. et al. Inhibition of tumor growth by elimination of granulocytes J. Exp. Med., 181 (1995),pp. 435-440
|
[50] |
Penuelas, S., Anido, J., Prieto-Sanchez, R.M. et al. TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma Cancer Cell, 15 (2009),pp. 315-327
|
[51] |
Prendergast, G.C. Immune escape as a fundamental trait of cancer: focus on IDO Oncogene, 27 (2008),pp. 3889-3900
|
[52] |
Prins, R.M., Scott, G.P., Merchant, R.E. et al. Irradiated tumor cell vaccine for treatment of an established glioma. II. Expansion of myeloid suppressor cells that promote tumor progression Cancer Immunol. Immunother., 51 (2002),pp. 190-199
|
[53] |
Reya, T., Morrison, S.J., Clarke, M.F. et al. Stem cells, cancer, and cancer stem cells Nature, 414 (2001),pp. 105-111
|
[54] |
Ribechini, E., Leenen, P.J., Lutz, M.B. Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells Eur. J. Immunol., 39 (2009),pp. 3538-3551
|
[55] |
Rivoltini, L., Carrabba, M., Huber, V. et al. Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction Immunol. Rev., 188 (2002),pp. 97-113
|
[56] |
Rodriguez, P.C., Quiceno, D.G., Ochoa, A.C. L-arginine availability regulates T-lymphocyte cell-cycle progression Blood, 109 (2007),pp. 1568-1573
|
[57] |
Rodriguez, P.C., Zea, A.H., DeSalvo, J. et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes J. Immunol., 171 (2003),pp. 1232-1239
|
[58] |
Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance Cell, 101 (2000),pp. 455-458
|
[59] |
Sawanobori, Y., Ueha, S., Kurachi, M. et al. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice Blood, 111 (2008),pp. 5457-5466
|
[60] |
Seung, L.P., Rowley, D.A., Dubey, P. et al. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc. Natl. Acad. Sci USA, 92 (1995),pp. 6254-6258
|
[61] |
Shojaei, F., Ferrara, N. Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells Cancer Res., 68 (2008),pp. 5501-5504
|
[62] |
Shojaei, F., Singh, M., Thompson, J.D. et al. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc. Natl. Acad. Sci USA, 105 (2008),pp. 2640-2645
|
[63] |
Shojaei, F., Wu, X.M., Qu, X.P. et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl. Acad. Sci USA, 106 (2009),pp. 6742-6747
|
[64] |
Shojaei, F., Wu, X., Malik, A.K. et al. Nat. Biotechnol., 25 (2007),pp. 911-920
|
[65] |
Shojaei, F., Wu, X., Zhong, C. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis Nature, 450 (2007),pp. 825-831
|
[66] |
Sica, A., Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development J. Clin. Invest., 117 (2007),pp. 1155-1166
|
[67] |
Sinha, P., Clements, V.K., Bunt, S.K. et al. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response J. Immunol., 179 (2007),pp. 977-983
|
[68] |
Sinha, P., Okoro, C., Foell, D. et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells J. Immunol., 181 (2008),pp. 4666-4675
|
[69] |
Taguchi, A., Blood, D.C., del Toro, G. et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases Nature, 405 (2000),pp. 354-360
|
[70] |
Terabe, M., Matsui, S., Park, J.M. et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence J. Exp. Med., 198 (2003),pp. 1741-1752
|
[71] |
Varga, G., Ehrchen, J., Tsianakas, A. et al. Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells J. Leukoc. Biol., 84 (2008),pp. 644-650
|
[72] |
Watanabe, S., Deguchi, K., Zheng, R. et al. J. Immunol., 181 (2008),pp. 3291-3300
|
[73] |
Yang, L., DeBusk, L.M., Fukuda, K. et al. Cancer Cell, 6 (2004),pp. 409-421
|
[74] |
Yang, L., Huang, J., Ren, X. et al. Cancer Cell, 13 (2008),pp. 23-35
|
[75] |
Yang, Z., Zhang, B., Li, D. et al. PLoS One, 5 (2010),p. e8922
|
[76] |
Yao, X.H., Ping, Y.F., Chen, J.H. et al. Glioblastoma stem cells produce vascular endothelial growth factor by activation of a G-protein coupled formylpeptide receptor FPR J. Pathol., 215 (2008),pp. 369-376
|
[77] |
Yong, H.Y., Moon, A. Roles of calcium-binding proteins, S100A8 and S100A9, in invasive phenotype of human gastric cancer cells Arch. Pharm. Res., 30 (2007),pp. 75-81
|
[78] |
Yu, S.C., Bian, X.W. Enrichment of cancer stem cells based on heterogeneity of invasiveness Stem Cell Rev., 5 (2009),pp. 66-71
|
[79] |
Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev Cancer, 5 (2005),pp. 263-274
|