5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 6
Jun.  2010
Turn off MathJax
Article Contents

PKS5, a SNF1-related kinase, interacts with and phosphorylates NPR1, and modulates expression of WRKY38 and WRKY62

doi: 10.1016/S1673-8527(09)60054-0
More Information
  • Corresponding author: E-mail address: xiechanggen@nibs.ac.cn (Changgen Xie)
  • Received Date: 2010-03-06
  • Accepted Date: 2010-04-27
  • Rev Recd Date: 2010-04-26
  • Available Online: 2010-07-01
  • Publish Date: 2010-06-20
  • NPR1 (Nonexpressor of Pathogenesis-Related gene 1) is a major co-activator of plant defense. Phosphorylations of NPR1 play important roles in fine-tuning its activity, however a kinase corresponding to such modification remains uncharacterized. Here, we report that NPR1 interacts with PKS5 (SOS2-like Protein Kinase 5). The AKR (AnKyrin Repeats) motif of NPR1 is required for this interaction. PKS5 phosphorylates NPR1 at the C-terminal region. Expression of PKS5 is induced quickly by Pseudomonas syringae pv. tomato DC3000. Expression level of two NPR1 target genes, WRKY38 and WRKY62, is reduced and/or delayed in pks5 mutants. Moreover, the expression of WRKY38 and WRKY62 displays a similar pattern in npr1-1pks5-1 double mutant comparing to that in npr1-1. Our results suggest that PKS5 functions at the upstream of NPR1 and might mediate expression of WRKY38 and WRKY62 possibly by interacting with and phosphorylating NPR1.
  • loading
  • [1]
    Cao, H., Glazebrook, J., Clarke, J.D. et al. Cell, 88 (1997),pp. 57-63
    [2]
    Despres, C., deLong, C., Glaze, S. et al. Plant Cell, 12 (2000),pp. 279-290
    [3]
    Dieterle, M., Thomann, A., Renou, J.P. et al. Plant J., 41 (2005),pp. 386-399
    [4]
    Du, L., Ali, G.S., Simons, K.A. et al. Nature, 457 (2009),pp. 1154-1158
    [5]
    Fuglsang, A.T., Guo, Y., Cuin, T.A. et al. Plant Cell, 19 (2007),pp. 1617-1634
    [6]
    Furihata, T., Maruyama, K., Fujita, Y. et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1 Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 1988-1993
    [7]
    Guillaumot, D., Guillon, S., Deplanque, T. et al. Plant J., 60 (2009),pp. 242-256
    [8]
    Guo, Y., Halfter, U., Ishitani, M. et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance Plant Cell, 13 (2001),pp. 1383-1400
    [9]
    Guo, Y., Xiong, L., Song, C.P. et al. Cell, 3 (2002),pp. 233-244
    [10]
    Holmberg, C.I., Tran, S.E., Eriksson, J.E. et al. Multisite phosphorylation provides sophisticated regulation of transcription factors Trends Biochem. Sci., 27 (2002),pp. 619-627
    [11]
    Jackson, A.O., Taylor, C.B. Plant-microbe interactions: life and death at the interface Plant Cell, 8 (1996),pp. 1651-1668
    [12]
    Karin, M., Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity Annu. Rev. Immunol., 18 (2000),pp. 621-663
    [13]
    Kim, K.C., Lai, Z., Fan, B. et al. Plant Cell, 20 (2008),pp. 2357-2371
    [14]
    Kinkema, M., Fan, W., Dong, X. Plant Cell, 12 (2000),pp. 2339-2350
    [15]
    Lee, J., Nam, J., Park, H.C. et al. Plant J., 49 (2007),pp. 79-90
    [16]
    Lin, H., Yang, Y., Quan, R. et al. Plant Cell, 21 (2009),pp. 1607-1619
    [17]
    Liu, J., Elmore, J.M., Fuglsang, A.T. et al. PLoS Biol., 7 (2009),p. e1000139
    [18]
    Mao, P., Duan, M., Wei, C. et al. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression Plant Cell Physiol., 48 (2007),pp. 833-842
    [19]
    Mou, Z., Fan, W., Dong, X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes Cell, 113 (2003),pp. 935-944
    [20]
    Quan, R., Lin, H., Mendoza, I. et al. Plant Cell, 19 (2007),pp. 1415-1431
    [21]
    Rochon, A., Boyle, P., Wignes, T. et al. Plant Cell, 18 (2006),pp. 3670-3685
    [22]
    Ryals, J., Weymann, K., Lawton, K. et al. Plant Cell, 9 (1997),pp. 425-439
    [23]
    Schaller, A., Oecking, C. Plant Cell, 11 (1999),pp. 263-272
    [24]
    Sheen, J. Plant Physiol., 127 (2001),pp. 1466-1475
    [25]
    Spoel, S.H., Mou, Z., Tada, Y. et al. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity Cell, 137 (2009),pp. 860-872
    [26]
    Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K. et al. Science, 321 (2008),pp. 952-956
    [27]
    Till, B.J., Reynolds, S.H., Greene, E.A. et al. Large-scale discovery of induced point mutations with high-throughput TILLING Genome Res., 13 (2003),pp. 524-530
    [28]
    van den Burg, H.A., Takken, F.L. Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci., 14 (2009),pp. 286-294
    [29]
    Xu, J., Li, H.D., Chen, L.Q. et al. Cell, 125 (2006),pp. 1347-1360
    [30]
    Yasuda, M., Ishikawa, A., Jikumaru, Y. et al. Plant Cell, 20 (2008),pp. 1678-1692
    [31]
    Zhang, Y., Tessaro, M.J., Lassner, M. et al. Plant Cell, 15 (2003),pp. 2647-2653
    [32]
    Zhang, Y., Fan, W., Kinkema, M. et al. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 6523-6528
    [33]
    Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. et al. Plant Physiol., 136 (2004),pp. 2621-2632
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (102) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return