5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 6
Jun.  2010
Turn off MathJax
Article Contents

The role of microRNAs in colorectal cancer

doi: 10.1016/S1673-8527(09)60053-9
More Information
  • Corresponding author: E-mail address: huiping@mail.hust.edu.cn (Huiping Chen)
  • Received Date: 2010-01-18
  • Accepted Date: 2010-04-20
  • Rev Recd Date: 2010-04-19
  • Available Online: 2010-07-01
  • Publish Date: 2010-06-20
  • MicroRNAs are small non-coding RNAs which regulate gene expression in a post-transcriptional manner. Although the first study was published about 15 years ago, knowledge about their role in regulation of cell proliferation, differentiation, apoptosis and immunity has been greatly advanced recently. Their association with formation, angiogenesis, metastasis and chemotherapy resistance of tumors has become one of the core issues in epigenetics of cancer. Here, we summarize the latest findings concerning microRNAs involved in different signal pathways leading to colorectal cancer, introduce some new potential microRNAs as biomarkers in diagnosis and prognosis, and analyze its application in the treatment of cancer.
  • loading
  • [1]
    Akao, Y., Nakagawa, Y., Naoe, T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells Biol. Pharm. Bull., 29 (2006),pp. 903-906
    [2]
    Ambros, V. The evolution of our thinking about microRNAs Nat. Med., 14 (2008),pp. 1036-1040
    [3]
    Arndt, G.M., Dossey, L., Cullen, L.M. et al. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer BMC Cancer, 9 (2009),p. 17
    [4]
    Baek, D., Villen, J., Shin, C. et al. The impact of microRNAs on protein output Nature, 455 (2008),pp. 64-71
    [5]
    Bandres, E., Agirre, X., Bitarte, N. et al. Epigenetic regulation of microRNA expression in colorectal cancer Int. J. Cancer, 125 (2009),pp. 2737-2743
    [6]
    Bandres, E., Bitarte, N., Arias, F. et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells Clin. Cancer Res., 15 (2009),pp. 2281-2290
    [7]
    Bandres, E., Cubedo, E., Agirre, X. et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues Mol. Cancer, 5 (2006),p. 10
    [8]
    Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
    [9]
    Bommer, G.T., Gerin, I., Feng, Y. et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes Curr. Biol., 17 (2007),pp. 1298-1307
    [10]
    Bonci, D., Coppola, V., Musumeci, M. et al. Nat. Med., 14 (2008),pp. 1271-1277
    [11]
    Boyle, P., Levin, B.
    [12]
    Brown, B.D., Naldini, L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications Nat. Rev. Genet., 10 (2009),pp. 578-585
    [13]
    Brown, B.D., Venneri, M.A., Zingale, A. et al. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer Nat. Med., 12 (2006),pp. 585-591
    [14]
    Brown, B.D., Gentner, B., Cantore, A. et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state Nat. Biotechnol., 25 (2007),pp. 1457-1467
    [15]
    Burk, U., Schubert, J., Wellner, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells EMBO Rep., 9 (2008),pp. 582-589
    [16]
    Care, A., Catalucci, D., Felicetti, F. et al. MicroRNA-133 controls cardiac hypertrophy Nat. Med., 13 (2007),pp. 613-618
    [17]
    Chen, X., Guo, X., Zhang, H. et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis Oncogene, 28 (2009),pp. 1385-1392
    [18]
    Dews, M., Homayouni, A., Yu, D. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster Nat. Genet., 38 (2006),pp. 1060-1065
    [19]
    Diosdado, B., van de Wiel, M., Droste, J. et al. Br. J. Cancer, 101 (2009),pp. 707-714
    [20]
    Ebert, M.S., Neilson, J.R., Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells Nat. Meth., 4 (2007),pp. 721-726
    [21]
    Edge, R.E., Falls, T.J., Brown, C.W. et al. A let-7 microRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication Mol. Ther., 16 (2008),pp. 1437-1443
    [22]
    Fabbri, M., Garzon, R., Cimmino, A. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 15805-15810
    [23]
    Faber, C., Kirchner, T., Hlubek, F. The impact of microRNAs on colorectal cancer Virchows Arch., 454 (2009),pp. 359-367
    [24]
    Fang, W., Lin, C., Zhang, H. et al. Detection of let-7a microRNA by real-time PCR in colorectal cancer: a single-centre experience from China J. Int. Med. Res., 35 (2007),pp. 716-723
    [25]
    Fodde, R., Smits, R., Clevers, H. APC, signal transduction and genetic instability in colorectal cancer Nat. Rev. Cancer, 1 (2001),pp. 55-67
    [26]
    Gentner, B., Schira, G., Giustacchini, A. et al. Nat. Meth., 6 (2009),pp. 63-66
    [27]
    Gregory, R.I., Shiekhattar, R. MicroRNA biogenesis and cancer Cancer Res., 65 (2005),pp. 3509-3512
    [28]
    Guo, C.G., Sah, J.F., Beard, L. et al. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers Genes Chromosomes Cancer, 47 (2008),pp. 939-946
    [29]
    He, X.-X., Chen, K., Yang, J. et al. Macrophage migration inhibitory factor promotes colorectal cancer Mol. Med., 15 (2009),pp. 1-10
    [30]
    Huang, Z.M., Yang, J., Shen, X.Y. et al. MicroRNA expression profile in non-cancerous colonic tissue associated with lymph node metastasis of colon cancer J. Dig. Dis., 10 (2009),pp. 188-194
    [31]
    Hudson, J.D., Shoaibi, M.A., Maestro, R. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity J. Exp. Med., 190 (1999),pp. 1375-1382
    [32]
    Jiang, S.-X., Wang, X.-S., Geng, C.-H. et al. Altering trend of clinical characteristics of colorectal cancer: a report of 3,607 cases Chin. J. Cancer, 28 (2009),pp. 54-56
    [33]
    Korpal, M., Lee, E.S., Hu, G.H. et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2 J. Biol. Chem., 283 (2008),pp. 14910-14914
    [34]
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W. et al. Identification of novel genes coding for small expressed RNAs Science, 294 (2001),pp. 853-858
    [35]
    Lanza, G., Ferracin, M., Gafa, R. et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer Mol. Cancer, 6 (2007),p. 11
    [36]
    Lau, N.C., Lim, L.P., Weinstein, E.G. et al. Science, 294 (2001),pp. 858-862
    [37]
    Lee, H., Rhee, H., Kang, H.J. et al. Macrophage migration inhibitory factor may be used as an early diagnostic marker in colorectal carcinomas Am. J. Clin. Pathol., 129 (2008),pp. 772-779
    [38]
    Lee, R.C., Ambros, V. Science, 294 (2001),pp. 862-864
    [39]
    Lee, R.C., Feinbaum, R.L., Ambros, V. Cell, 75 (1993),pp. 843-854
    [40]
    Legendre, H., Decaestecker, C., Nagy, N. et al. Prognostic values of galectin-3 and the macrophage migration inhibitory factor (MIF) in human colorectal cancers Mod. Pathol., 16 (2003),pp. 491-504
    [41]
    Lu, J., Getz, G., Miska, E.A. et al. MicroRNA expression profiles classify human cancers Nature, 435 (2005),pp. 834-838
    [42]
    Michael, M.Z., O'Connor, S.M., Pellekaan, N.G.V. et al. Reduced accumulation of specific microRNAs in colorectal neoplasia Mol. Cancer Res., 1 (2003),pp. 882-891
    [43]
    Miyaki, M., Iijima, T., Kimura, J. et al. Cancer Res., 59 (1999),pp. 4506-4509
    [44]
    Motoyama, K., Inoue, H., Takatsuno, Y. et al. Over- and under-expressed microRNAs in human colorectal cancer Int. J. Oncol., 34 (2009),pp. 1069-1075
    [45]
    Nagel, R., le Sage, C., Diosdado, B. et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer Cancer Res., 68 (2008),pp. 5795-5802
    [46]
    Nakajima, G., Hayashi, K., Xi, Y. et al. Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer Cancer Genomics Proteomics, 3 (2006),pp. 317-324
    [47]
    Ng, E.K.O., Tsang, W.P., Ng, S.S.M. et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer Br. J. Cancer, 101 (2009),pp. 699-706
    [48]
    Ohkawara, T., Nishihira, J., Takeda, H. et al. Pathophysiological roles of macrophage migration inhibitory factor in gastrointestinal, hepatic, and pancreatic disorders J. Gastroenterol., 40 (2005),pp. 117-122
    [49]
    Schepeler, T., Reinert, J.T., Ostenfeld, M.S. et al. Diagnostic and prognostic microRNAs in stage II colon cancer Cancer Res., 68 (2008),pp. 6416-6424
    [50]
    Scherr, M., Venturini, L., Battmer, K. et al. Lentivirus-mediated antagomir expression for specific inhibition of miRNA function Nucleic Acids Res., 35 (2007),p. 22
    [51]
    Schetter, A.J., Leung, S.Y., Sohn, J.J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma J. Am. Med. Assoc., 299 (2008),pp. 425-436
    [52]
    Schimanski, C.C., Frerichs, K., Rahman, F. et al. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells World J. Gastroenterol., 15 (2009),pp. 2089-2096
    [53]
    Selbach, M., Schwanhausser, B., Thierfelder, N. et al. Widespread changes in protein synthesis induced by microRNAs Nature, 455 (2008),pp. 58-63
    [54]
    Shell, S., Park, S.M., Radiabi, A.R. et al. Let-7 expression defines two differentiation stages of cancer Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 11400-11405
    [55]
    Singh, S.K., Bhadra, M.P., Girschick, H.J. et al. MicroRNAs—micro in size but macro in function FEBS J., 275 (2008),pp. 4929-4944
    [56]
    Slaby, O., Svoboda, M., Fabian, P. et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer Oncology, 72 (2007),pp. 397-402
    [57]
    Spaderna, S., Schmalhofer, O., Hlubek, F. et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer Gastroenterology, 131 (2006),pp. 830-840
    [58]
    Spaderna, S., Schmalhofer, O., Wahlbuhl, M. et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer Cancer Res., 68 (2008),pp. 537-544
    [59]
    Sparks, A.B., Morin, P.J., Vogelstein, B. et al. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer Cancer Res., 58 (1998),pp. 1130-1134
    [60]
    Steinbach, G., Lynch, P.M., Phillips, R.K.S. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis N. Engl. J. Med., 342 (2000),pp. 1946-1952
    [61]
    Strillacci, A., Griffoni, C., Sansone, P. et al. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells Exp. Cell Res., 315 (2009),pp. 1439-1447
    [62]
    Sureban, S.M., May, R., Ramalingam, S. et al. Selective blockade of DCAMKL-1 results in tumor growth arrest by a Let-7a microRNA-dependent mechanism Gastroenterology, 137 (2009),pp. 649-659
    [63]
    Suzuki, T., Sakurai, F., Nakamura, S.I. et al. miR-122a-regulated expression of a suicide gene prevents hepatotoxicity without altering antitumor effects in suicide gene therapy Mol. Ther., 16 (2008),pp. 1719-1726
    [64]
    Tay, Y., Zhang, J.Q., Thomson, A.M. et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation Nature, 455 (2008),pp. 1124-1128
    [65]
    Tazawa, H., Tsuchiya, N., Izumiya, M. et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 15472-15477
    [66]
    Thiery, J.P., Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions Nat. Rev. Mol. Cell Biol., 7 (2006),pp. 131-142
    [67]
    Toyota, M., Suzuki, H., Sasaki, Y. et al. Cancer Res., 68 (2008),pp. 4123-4132
    [68]
    Tsang, W.P., Kwok, T.T. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3 Apoptosis, 13 (2008),pp. 1215-1222
    [69]
    Tsujii, M., Kawano, S., DuBois, R.N. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 3336-3340
    [70]
    Varambally, S., Cao, Q., Mani, R.S. et al. Science, 322 (2008),pp. 1695-1699
    [71]
    Wang, C.J., Zhou, Z.G., Wang, L. et al. Clinicopathological significance of microRNA-31,-143 and-145 expression in colorectal cancer Dis. Markers, 26 (2009),pp. 27-34
    [72]
    Wang, P., Zou, F.D., Zhang, X.D. et al. MicroRNA-21 megatively regulates Cdc25A and cell cycle progression in colon cancer cells Cancer Res., 69 (2009),pp. 8157-8165
    [73]
    Wang, X., Lam, E.K.Y., Zhang, J.B. et al. MicroRNA-122a functions as a novel tumor suppressor downstream of adenomatous polyposis coli in gastrointestinal cancers Biochem. Biophys. Res. Commun., 387 (2009),pp. 376-380
    [74]
    Wellner, U., Schubert, J., Burk, U.C. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs Nat. Cell Biol., 11 (2009),pp. 1487-1495
    [75]
    Wilson, J.M., Coletta, P.L., Cuthbert, R.J. et al. Macrophage migration inhibitory factor promotes intestinal tumorigenesis Gastroenterology, 129 (2005),pp. 1485-1503
    [76]
    Xi, Y., Formentini, A., Chien, M. et al. Prognostic values of microRNAs in colorectal cancer Biomark Insights, 2 (2006),pp. 113-121
    [77]
    Xu, T., Zhu, Y., Xiong, Y.J. et al. MicroRNA-195 suppresses tumorigenicity and regulates G(1)/S transition of human hepatocellular carcinoma cells Hepatology, 50 (2009),pp. 113-121
    [78]
    Yamakuchi, M., Ferlito, M., Lowenstein, C.J. miR-34a repression of SIRT1 regulates apoptosis Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 13421-13426
    [79]
    Yasasever, V., Camlica, H., Duranyildiz, D. et al. Macrophage migration inhibitory factor in cancer Cancer Investig., 25 (2007),pp. 715-719
    [80]
    Ylosmaki, E., Hakkarainen, T., Hemminki, A. et al. Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific microRNA J. Virol., 82 (2008),pp. 11009-11015
    [81]
    Zhao, H.Y., Ooyama, A., Yamamoto, M. et al. Down regulation of c-Myc and induction of an angiogenesis inhibitor, thrombospondin-1, by 5-FU in human colon cancer KM12C cells Cancer Lett., 270 (2008),pp. 156-163
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return