5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 5
May  2010
Turn off MathJax
Article Contents

The phylogeny of Orthoptera inferred from mtDNA and description of Elimaea cheni (Tettigoniidae: Phaneropterinae) mitogenome

doi: 10.1016/S1673-8527(09)60049-7
More Information
  • Corresponding author: E-mail address: yuanh@snnu.edu.cn (Yuan Huang)
  • Received Date: 2009-12-17
  • Accepted Date: 2010-04-15
  • Rev Recd Date: 2010-04-08
  • Available Online: 2010-05-31
  • Publish Date: 2010-05-20
  • The complete 15,831 bp nucleotide sequence of the mitochondrial genome from Elimaea cheni (Phaneropterinae) was determined. The putative initiation codon for cox1 was TTA. The phylogeny of Orthoptera based on different mtDNA datasets were analyzed with maximum likelihood (ML) and Bayesian inference (BI). When all 37 genes (mtDNA) were analyzed simultaneously, the monophyly of Caelifera and Ensifera were recovered in the context of our taxon sampling. The phylogeny of Orthoptera was largely consistent with previous phylogenetic hypotheses. Rhaphidophoridae to be a sister group of Tettigoniidae, and the relationships among four subfamilies of Tettigoniidae were (Phaneropterinae + (Conocephalinae + (Bradyporinae + Tettigoniinae))). Pyrgomorphidae was the most basal group of Caelifera. The relationships among six acridid subfamilies were (Oedipodinae + (Acridinae + (Gomphocerinae + (Oxyinae + (Calliptaminae + Cyrtacanthacridinae))))). However, we did not recover a monophyletic Grylloidea. Myrmecophilidae clustered into one clade with Gryllotalpidae instead of with Gryllidae. ML and BI analyses of all protein coding genes (using all nucleotide sequence data or excluding the third codon position, and amino acid sequences) revealed a topology identical to that of the entire mtDNA genome dataset. However, 22 tRNAs genes excluding the DHU loop and TψC loop (TRNA), and two rRNA genes (RRNA) perform poorly when analyzed as single dataset. Our results suggest that the best phylogenetic inferences were ML and BI methods based on total mtDNA. Excluding tRNA genes, rRNA genes and the third codon position of protein coding genes from dataset and converting nucleotide sequences to amino acid sequences do not positively affect phylogenetic reconstruction.
  • loading
  • [1]
    Abascal, F., Posada, D., Zardoya, R. MtArt: a new model of amino acid replacement for Arthropoda Mol. Biol. Evol., 24 (2007),pp. 1-5
    [2]
    Bae, J.S., Kim, I., Sohn, H.D. et al. Mol. Phylogenet. Evol., 32 (2004),pp. 978-985
    [3]
    Beard, C.B., Mills Harem, D., Collins, F.H. Insect Mol. Biol., 2 (1993),pp. 103-124
    [4]
    Boore, J.L. Animal mitochondrial genomes Nucleic Acids Res., 27 (1999),pp. 1767-1780
    [5]
    Cameron, S.L., Barker, S.C., Whiting, M.F. Mitochondrial genomics and the new insect order Mantophasmatodea Mol. Phylogenet. Evol., 38 (2006),pp. 274-279
    [6]
    Cameron, S.L., Lambkin, C.L., Barker, S.C. et al. A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision Syst. Entomol., 32 (2007),pp. 40-59
    [7]
    Cameron, S.L., Miller, K.B., D'Haese, C.A. et al. Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda) Cladistics, 20 (2004),pp. 534-557
    [8]
    Chenna, R., Sugawara, H., Koike, T. et al. Multiple sequence alignment with the Clustal series of programs Nucleic Acids Res., 31 (2003),pp. 3497-3500
    [9]
    Clary, D.O., Wolstenholme, D.R. J. Mol. Evol., 22 (1985),pp. 252-271
    [10]
    Corneli, P.S., Ward, R.H. Mitochondrial genes and mammalian phylogenies: increasing the reliability of branch length estimation Mol. Biol. Evol., 17 (2000),pp. 224-234
    [11]
    Crozier, R.H., Crozier, Y.C. Genetics, 133 (1993),pp. 97-117
    [12]
    Ding, F.M., Shi, H.W., Huang, Y. Zool. Res., 28 (2007),pp. 580-588
    [13]
    Fenn, J.D., Cameron, S.L., Whiting, M.F. Insect Mol. Biol., 16 (2007),pp. 239-252
    [14]
    Fenn, J.D., Song, H., Cameron, S.L. et al. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data Mol. Phylogenet. Evol., 49 (2008),pp. 59-68
    [15]
    Flook, P.K., Klee, S., Rowell, C.H.F. Combined molecular phylogenetic analysis of the Orthoptera and its implications for their higher systematics Systematic Biol., 48 (1999),pp. 233-253
    [16]
    Flook, P.K., Rowell, C.H., Gellissen, G. J. Mol. Evol., 41 (1995),pp. 928-941
    [17]
    Gwynne, D.T., and Morris, G.K. (2002). Tettigoniidae. katydids, long-horned grasshoppers and bushcrickets. Version 26 November 2002 http://tolweb.org/Tettigoniidae/13298/2002.11.26 in the tree of life web project, http://tolweb.org/
    [18]
    Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic Acids Symp. Res., 41 (1999),pp. 95-98
    [19]
    Hu, M., Jex, A.R., Campbell, B.E. et al. Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing Nat. Protoc., 2 (2007),pp. 2339-2444
    [20]
    Huelsenbeck, J.P., Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees Bioinformatics, 17 (2001),pp. 754-755
    [21]
    Jobb, G., von Haeseler, A., Strimmer, K. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics BMC Evol. Biol., 4 (2004),p. 18
    [22]
    Jost, M.C., Shaw, K.L. Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication Mol. Phylogenet. Evol., 38 (2006),pp. 510-530
    [23]
    Kim, I., Cha, S.Y., Yoon, M.H. et al. Gene, 353 (2005),pp. 155-168
    [24]
    Liu, D.F., Dong, Z.M., Zhang, D.Y. et al. Molecular phylogeny of the higher category of Acrididae (Orthoptera: Acridoidea) Zool. Res., 29 (2008),pp. 585-591
    [25]
    Liu, N., Hu, J., Huang, Y. Amplification of grasshoppers complete mitochondrial genomes using long PCR Chin. J. Zool., 41 (2006),pp. 61-65
    [26]
    Liu, Y., Huang, Y. Chinese Journal of Biochemistry and Molecular Biology, 24 (2008),pp. 329-335
    [27]
    Lowe, T.M., Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence Nucleic Acids Res., 25 (1997),pp. 955-964
    [28]
    Ma, C., Liu, C., Yang, P. et al. BMC Genomics, 10 (2009),p. 156
    [29]
    Mueller, R.L. Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis Syst. Biol., 55 (2006),pp. 289-300
    [30]
    Nardi, F., Carapelli, A., Fanciulli, P.P. et al. Mol. Biol. Evol., 18 (2001),pp. 1293-1304
    [31]
    Nardi, F., Spinsanti, G., Boore, J.L. et al. Hexapod origins: monophyletic or paraphyletic? Science, 299 (2003),pp. 1887-1889
    [32]
    Ojala, D., Montoya, J., Attardi, G. tRNA punctuation model of RNA processing in human mitochondria Nature, 290 (1981),pp. 470-474
    [33]
    Posada, D., Crandall, K.A. Modeltest: testing the model of DNA substitution Bioinformatics, 14 (1998),pp. 817-818
    [34]
    Ronquist, F., Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models Bioinformatics, 19 (2003),pp. 1572-1574
    [35]
    Sasaki, T., Nikaido, M., Hamilton, H. et al. Mitochondrial phylogenetics and evolution of mysticete whales Syst. Biol., 54 (2005),pp. 77-90
    [36]
    Shi, H.W., Ding, F.M., Huang, Y. Chinese Journal of Biochemistry and Molecular Biology, 24 (2008),pp. 604-611
    [37]
    Simon, C., Buckley, T.R., Frati, F. et al. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA Annu. Rev. Ecol. Evol. Syst., 37 (2006),pp. 545-579
    [38]
    Simon, C., Frati, F., Bekenbach, A. et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain-reaction primers Ann. Entomol. Soc. Am., 87 (1994),pp. 651-701
    [39]
    Stadn, R., Beal, K.F., Bonfield, J.K. The Staden package, 1998 Methods Mol. Biol., 132 (2000),pp. 115-130
    [40]
    Steinberg, S., Leclerc, F., Cedergren, R. Structural rules and conformational compensations in the tRNA L-form J. Mol. Biol., 266 (1997),pp. 269-282
    [41]
    Stewart, J.B., Beckenbach, A.T. Mol. Phylogenet. Evol., 26 (2003),pp. 513-526
    [42]
    Storozhenko, S.Y.
    [43]
    Wolstenholme, D.R. Animal mitochondrial DNA: structure and evolution Int. Rev. Cytol., 141 (1992),pp. 173-216
    [44]
    Yamauchi, M.M., Miya, M.U., Nishida, M. Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans Insect Mol. Biol., 13 (2004),pp. 435-442
    [45]
    Ye, W., Dang, J.P., Xie, L.D. et al. Zoological Research, 29 (2008),pp. 236-244
    [46]
    Zhang, C.Y., Huang, Y. Acta Bioch. Bioph. Sin., 40 (2008),pp. 7-18
    [47]
    Zhou, Z.J., Huang, Y., Shi, F.M. Genome, 50 (2007),pp. 855-866
    [48]
    Zhou, Z.J., Huang, Y., Shi, F.M. et al. Mol. Biol. Rep., 36 (2009),pp. 7-12
    [49]
    Zhou, Z.J., Shi, F.M., Huang, Y. J. Genet. Genomics, 35 (2008),pp. 341-348
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return