5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 3
Mar.  2010
Turn off MathJax
Article Contents

A gene family-based method for interspecies comparisons of sequencing-based transcriptomes and its use in environmental adaptation analysis

doi: 10.1016/S1673-8527(09)60039-4
More Information
  • Corresponding author: E-mail address: lbchen@genetics.ac.cn (Liangbiao Chen)
  • Received Date: 2009-11-09
  • Accepted Date: 2010-02-03
  • Rev Recd Date: 2010-01-20
  • Available Online: 2010-03-27
  • Publish Date: 2010-03-20
  • We describe a new method for sequencing-based cross-species transcriptome comparisons and define a new metric for evaluating gene expression across species using protein-coding families as units of comparison. Using this measure transcriptomes from different species were evaluated by mapping them to gene families and integrating the mapping results with expression data. Statistical tests were applied to the transcriptome evaluation results to identify differentially expressed families. A Perl program named Pro-Diff was compiled to implement this method. To evaluate the method and provide an example of its use, two liver EST transcriptomes from two closely related fish that live in different temperature zones were compared. One EST library was from a recent sequencing project of Dissosticus mawsoni, a fish that lives in cold Antarctic sea waters, while the other was newly sequenced data (available at: http://www.fishgenome.org/polarbank/) from Notothenia angustata, a species that lives in temperate near-shore water of southern New Zealand. Results from the comparison were consistent with results inferred from phenotype differences and also with our previously published Gene Ontology-based method. The Pro-Diff program and operation manual can be downloaded from: http://www.fishgenome.org/download/Prodiff.rar.
  • loading
  • [1]
    Abele, D., Puntarulo, S. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish Comp. Biochem. Physiol. A Mol. Integr. Physiol., 138 (2004),pp. 405-415
    [2]
    Altschul, S.F., Gish, W., Miller, W. et al. Basic local alignment search tool J. Mol. Biol., 215 (1990),pp. 403-410
    [3]
    Ashburner, M., Ball, C.A., Blake, J.A. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat. Genet., 25 (2000),pp. 25-29
    [4]
    Audic, S., Claverie, J.M. The significance of digital gene expression profiles Genome Res., 7 (1997),pp. 986-995
    [5]
    Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing J. Roy. Stat. Soc. B, 57 (1995),pp. 289-300
    [6]
    Binkert, C., Demetriou, M., Sukhu, B. et al. Regulation of osteogenesis by fetuin J. Biol. Chem., 274 (1999),pp. 28514-28520
    [7]
    Boguski, M.S., Lowe, T.M., Tolstoshev, C.M. dbEST—database for “expressed sequence tags” Nat. Genet., 4 (1993),pp. 332-333
    [8]
    Brenner, S., Johnson, M., Bridgham, J. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays Nat. Biotechnol., 18 (2000),pp. 630-634
    [9]
    Caceres, M., Lachuer, J., Zapala, M.A. et al. Elevated gene expression levels distinguish human from non-human primate brains Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 13030-13035
    [10]
    Chen, J., Blackwell, T.W., Fermin, D. et al. Evolutionary-conserved gene expression response profiles across mammalian tissues Omics, 11 (2007),pp. 96-115
    [11]
    Chen, Z., Wang, W., Ling, X.B. et al. GO-Diff: mining functional differentiation between EST-based transcriptomes BMC Bioinformatics, 7 (2006),p. 72
    [12]
    Chen, Z., Xue, C., Zhu, S. et al. GoPipe: streamlined gene ontology annotation for batch anonymous sequences with statistics Prog. Biochem. Biophy., 32 (2005),pp. 187-191
    [13]
    Chen, Z., Cheng, C.H., Zhang, J. et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 12944-12949
    [14]
    Clarke, A., Doherty, N., DeVries, A.L. et al. Lipid content and composition of three species of Antarctic fish in relation to buoyancy Polar Biol., 3 (1984),pp. 77-83
    [15]
    Eastman, J.T., DeVries, A.L. Buoyancy adaptations in a swim-bladderless Antarctic fish J. Morph., 167 (1981),pp. 91-102
    [16]
    Eastman, J.T., DeVries, A.L. Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica Copeia, 2 (1982),pp. 385-393
    [17]
    Enard, W., Khaitovich, P., Klose, J. et al. Intra- and interspecific variation in primate gene expression patterns Science, 296 (2002),pp. 340-343
    [18]
    Ewing, B., Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities Genome Res., 8 (1998),pp. 186-194
    [19]
    Fei, Z., Tang, X., Alba, R.M. et al. Comprehensive EST analysis of tomato and comparative genomics of fruit ripening Plant J., 40 (2004),pp. 47-59
    [20]
    Finn, R.D., Tate, J., Mistry, J. et al. The Pfam protein families database Nucleic Acids Res., 36 (2008),pp. D281-D288
    [21]
    Gilad, Y., Rifkin, S.A., Bertone, P. et al. Multi-species microarrays reveal the effect of sequence divergence on gene expression profiles Genome Res., 15 (2005),pp. 674-680
    [22]
    Gilad, Y., Oshlack, A., Smyth, G.K. et al. Expression profiling in primates reveals a rapid evolution of human transcription factors Nature, 440 (2006),pp. 242-245
    [23]
    Gu, X., Su, Z. Tissue-driven hypothesis of genomic evolution and sequence-expression correlations Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 2779-2784
    [24]
    Heiss, A., DuChesne, A., Denecke, B. et al. Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles J. Biol. Chem., 278 (2003),pp. 13333-13341
    [25]
    Hoffmann, R., Lottaz, C., Kuhne, T. et al. Neutrality, compensation, and negative selection during evolution of B-cell development transcriptomes Mol. Biol. Evol., 24 (2007),pp. 2610-2618
    [26]
    Huang, X., Madan, A. CAP3: a DNA sequence assembly program Genome Res., 9 (1999),pp. 868-877
    [27]
    Hunter, S., Apweiler, R., Attwood, T.K. et al. InterPro: the integrative protein signature database Nucleic Acids Res., 21 (2008),p. 21
    [28]
    Khaitovich, P., Paabo, S., Weiss, G. Toward a neutral evolutionary model of gene expression Genetics, 170 (2005),pp. 929-939
    [29]
    Khaitovich, P., Enard, W., Lachmann, M. et al. Evolution of primate gene expression Nat. Rev. Genet., 7 (2006),pp. 693-702
    [30]
    Khaitovich, P., Weiss, G., Lachmann, M. et al. A neutral model of transcriptome evolution PLoS Biol., 2 (2004),p. E132
    [31]
    Khaitovich, P., Hellmann, I., Enard, W. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees Science, 309 (2005),pp. 1850-1854
    [32]
    Khatri, P., Draghici, S. Ontological analysis of gene expression data: current tools, limitations, and open problems Bioinformatics, 21 (2005),pp. 3587-3595
    [33]
    Lemos, B., Bettencourt, B.R., Meiklejohn, C.D. et al. Mol. Biol. Evol., 22 (2005),pp. 1345-1354
    [34]
    Liang, F., Holt, I., Pertea, G. et al. An optimized protocol for analysis of EST sequences Nucleic Acids Res., 28 (2000),pp. 3657-3665
    [35]
    Liao, B.Y., Zhang, J. Evolutionary conservation of expression profiles between human and mouse orthologous genes Mol. Biol. Evol., 23 (2006),pp. 530-540
    [36]
    Liao, B.Y., Zhang, J. Low rates of expression profile divergence in highly expressed genes and tissue-specific genes during mammalian evolution Mol. Biol. Evol., 23 (2006),pp. 1119-1128
    [37]
    Man, M.Z., Wang, X., Wang, Y. POWER_SAGE: comparing statistical tests for SAGE experiments Bioinformatics, 16 (2000),pp. 953-959
    [38]
    Margulies, M., Egholm, M., Altman, W.E. et al. Genome sequencing in microfabricated high-density picolitre reactors Nature, 437 (2005),pp. 376-380
    [39]
    Marioni, J.C., Mason, C.E., Mane, S.M. et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays Genome Res., 18 (2008),pp. 1509-1517
    [40]
    Metcalf, V.J., Brennan, S.O., George, P.M. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 124 (1999),pp. 147-155
    [41]
    Meyers, B.C., Vu, T.H., Tej, S.S. et al. Nat. Biotechnol., 22 (2004),pp. 1006-1011
    [42]
    Nobuta, K., Vemaraju, K., Meyers, B.C. Methods for analysis of gene expression in plants using MPSS Methods Mol. Biol., 406 (2007),pp. 387-408
    [43]
    Redon, R., Ishikawa, S., Fitch, K.R. et al. Global variation in copy number in the human genome Nature, 444 (2006),pp. 444-454
    [44]
    Sutton, G., White, O., Adams, M. et al. TIGR Assembler: a new tool for assembling large shotgun sequencing projects Genome Sci. Tech., 1 (1995),pp. 9-19
    [45]
    Suzek, B.E., Huang, H., McGarvey, P. et al. UniRef: comprehensive and non-redundant UniProt reference clusters Bioinformatics, 23 (2007),pp. 1282-1288
    [46]
    t Hoen, P.A., Ariyurek, Y., Thygesen, H.H. et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms Nucleic Acids Res., 36 (2008),p. e141
    [47]
    Tirosh, I., Barkai, N. Evolution of gene sequence and gene expression are not correlated in yeast Trends Genet., 24 (2008),pp. 109-113
    [48]
    van Ruissen, F., Baas, F. Serial analysis of gene expression (SAGE) Methods Mol. Biol., 383 (2007),pp. 41-66
    [49]
    Whitehead, A., Crawford, D.L. Neutral and adaptive variation in gene expression Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 5425-5430
    [50]
    Wu, C.H., Apweiler, R., Bairoch, A. et al. The Universal Protein Resource (UniProt): an expanding universe of protein information Nucleic Acids Res., 34 (2006),pp. D187-D191
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return